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Executive summary 

This ATBD (Algorithm Theoretical Based Document) describes the proposed algorithm for Level 2 
biophysical land products derived from MERIS top of canopy reflectance data with justification of 
the choices made. The biophysical land products considered are the following set of biophysical 
variables: LAI, fCover, CBabB and LAI.CBabB. The algorithm accepts as inputs the top of canopy 
reflectances, i.e. atmospherically corrected top of atmosphere data as derived from MERIS L1b 
images. It applies both to full and reduced resolution MERIS images.  
 
The proposed algorithm called here TOC_VEG is based on the training of neural networks over a 
data base simulated using radiative transfer models. The SAIL, PROSPECT models are coupled 
and used to simulate the reflectance in the 11 MERIS bands considered (490 nm, 510 nm, 560 nm, 
620 nm, 665 nm, 681.25 nm, 708.75 nm, 753.75 nm, 778.75 nm, 865 nm, 885 nm). The shortest 
wavelength bands, the oxygen and water absorption bands have not been used because they 
would convey significant uncertainties associated while providing only marginal information on the 
surface. The background optical properties are simulated using a collection of soil, water and snow 
typical reflectance spectra. A brightness factor is used to provide additional flexibility of the 
background reflectance. Finally, to account for the medium resolution of MERIS observations, 
mixed pixels are simulated with variable fractions of pure background and pure vegetation.  
 
The simulation of the top of atmosphere reflectance in the 11 MERIS bands requires 14 input 
variables. They were drawn randomly according to an experimental plan aiming at getting a more 
evenly populated space of canopy realization. To provide more robust performances of the 
network, the distributions of each input variable was close to the actual distributions and, when 
possible, realistic co-distributions were also used. This was achieved by considering a 
representative distribution of targets over the earth surface that constrains the observation 
geometry, as well as possible vegetation amount. A total number of 46533 cases were simulated. 
Half of this data set was used for training, one quarter to evaluate hyper-specialization, and the last 
quarter to quantify the theoretical performances. 
 
Back-propagation neural networks were trained for each variable considered. The architecture was 
optimized, resulting in 2 hidden layers of tangent-sigmoid neurones corresponding to a total 
around. The four variables were estimated concurrently with the same network to provide more 
consistency between the variables. 
 
The theoretical performances were evaluated over the test simulated data set. It allowed providing 
estimates of uncertainties. They are close to 0.06 (absolute value) for fAPAR and 0.08 for fCover, . 
For LAI, the rmse is close to 0.8 (absolute value) and to 53 for LAI.Cab that shows some loss of 
sensitivity for the larger values of LAI and LAI.Cab due to saturation effects. 
 
Finally, quality assessment criterions are proposed, including the theoretical uncertainties on the 
product, the reflectance mismatch quantifying the agreement with the training data base, and flags 
indicating possible values out of range. 
 
This algorithm is to be implemented within the BEAM toolbox. 
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Symbols and Acronyms 

1D One directional radiative transfer model 
3D Three directional radiative transfer model 
ALA Average Leaf inclination Angle 
albedo fraction of reflected radiation integrated over view direction & wavelength 
ANN Artificial Neural Network 
ATBD Algorithm theoretical based Document 
ASCAR Algorithm Survey and Critical Analysis Report 
BRDF Bidirectional Reflectance Distribution Function 
C Biophysical variables covariance matrix of (used in the cost function) 
CBabB Leaf chlorophyll content 
CBbpB Leaf brown pigment content 
CBmB Leaf dry matter content 
CBwB Leaf water content 
CBiB Content of constituent i per unit leaf area 
CYTTARES Cyclopes Training and Testing Algorithm Reference Ensemble of Sites 
DPM Detailed Processing Methods 
ENVISAT Environment Satellite 
fAPAR Fraction of Absorbed Photosynthetically Active Radiation 
FR Full resolution (300m) 
H Background moisture 
HOT Hot spot parameter (leaf size relative to canopy height) 
fCover Fraction of vegetation cover 
IODD Input Output Description Document 
K Absorption coefficient used in the leaf model 
kBiB Specific absorbtion coefficient for constituent i 
L2 Level 2 product 
L3 Level 3 product 
LAI Leaf Area Index 
LB Lower Bound 
LUT Look Up Table 
MERIS Medium resolution imaging spectrometer 
MGVI MERIS Global Vegetation Index 
MISR Multi-angular Imaging Spectroradiometer 
MODIS Moderate Imaging Spectrometer 
M*BinputB Matrix of normalised inputs of the Aritifical Neural Network 
N Leaf structure parameter 
NDVI Normalized Difference Vegetation Index 
NNT Neural Network Technique 
PROSPECT A leaf optical properties model 
RMSE Root Mean Square Error 
nR  TOC Reflectance measured in configuration n 

RBbB Soil background reflectance 
RBsnowB Reflectance of snow 
B

sims
TOCR B Simulated top of canopy reflectance 

RBTOCB Top of canopy reflectance 
B *TOCR B Normalized top of canopy reflectance 
RBvegB Reflectance of the vegetation part of a simulated scene 
RR Reduced Resolution (1200m) 
RTM Radiative Transfer Model 
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SAIL Scattering by Arbitrarily inclined Leaves (a 1D radiative transfer model) 
SLA Specific leaf area 
SLW Specific leaf weight 
TOA Top of Atmosphere 
TOC Top of Canopy 
TOA_VEG This algorithm 
UB Upper Bound 
VP

max
P Maximum value of the variable V 

VP

min
P Minimum value of the variable V 

VI Vegetation Index 
z Background roughness 
φ  view azimuth angle relative to the illumination direction 
σ  Standard deviation 
sθ  Sun zenith angle 
*sθ  Normalized sun zenith angle 

vθ  View zenith angle 
*vθ  Normalized view zenith angle 

Ω Illumination and view geometrical configuration 
λ wavelength 
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1. Introduction 
The MERIS sensor launched in 2002 by the European Space Agency provides unique spectral 
spatial and temporal characteristics that will make it a very efficient tool for the global monitoring of 
land surfaces (Rast, Bézy et al., 1999). However, if the potential is high, there were currently no 
proper products corresponding to biophysical variables to characterize vegetation. The European 
Space Agency has therefore supported this study dedicated to the development of level 2 
biophysical products from MERIS observations acquired both at full and reduced resolutions. 
 
The objective of this document is to provide a detailed description and justification of the algorithm 
proposed to derive level 2 products from MERIS observations. These products correspond to the 
following set of biophysical variables: LAI, fCover, CBabB and LAIxCBabB.  

The proposed algorithm follows the recommendations issued in the ASCAR document (Algorithm 
Survey and Critical Analysis Report) (Baret, Bacour et al., 2003) that was reviewing the current 
algorithms implemented for several sensors. A validation document is also available, that presents 
preliminary evaluation evidences, and draws few conclusions on the performances of the 
algorithm. 
 
This algorithm is dedicated to the estimation of the biophysical variables considered from top of 
canopy MERIS products. 

This ATBD document is split in 3 main sections: 

1. Algorithm overview. This section contains: 

• A brief description of MERIS main characteristics 

• A definition of the proposed products that could apply both to FR (full resolution) 
and RR (reduced resolution) MERIS L1b images. 

• The outline of the algorithm. 

2. Description of the algorithm. This section contains: 

• The inputs required and outputs provided by the algorithm. 

• The reflectance models used. The SAIL canopy reflectance model is used along 
with the PROSPECT model for the leaf optical properties. The background is 
described using reference reflectance spectra of soil, modulated using a brightness 
parameter. In addition, the mixed nature of the medium resolution MERIS pixels is 
considered here by introducing a vegetation cover fraction. 

• The inversion technique used. Neural network techniques will constitute the core of 
the operational algorithm. Quality indicators are also provided. 

3. Algorithm prototyping. In this section the training data base on which the networks are 
calibrated is described. It is made of reflectance simulations achieved with the radiative 
transfer models presented above. The theoretical performances are finally described. 
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2. Algorithm overview 
2.1. Instrument characteristics 
MERIS is a medium spatial resolution imaging spectrometer operating in the solar reflective 
spectral range. Fifteen spectral bands are routinely acquired in the 390 nm to 1040 nm spectral 
range (see Table 1).  As compared to other medium resolution instruments, his spectral sampling 
is very unique and the algorithm developed hereafter will take full advantage of this design.  

 

# Centre (nm) Width (nm) Potential Applications   
1 412.5 10 Yellow substance and detrital pigments 
2 442.5 10 Chlorophyll absorption maximum   
3 490 10 Chlorophyll and other pigments   
4 510 10 Suspended sediment, red tides   
5 560 10 Chlorophyll absorption minimum   
6 620 10 Suspended sediment   
7 665 10 Chlorophyll absorption and fluo. reference  
8 681.25 7.5 Chlorophyll fluorescence peak  
9 708.75 10 Fluo. Reference, atmospheric corrections  

10 753.75 7.5 Vegetation, cloud  
11 760.625 3.75 Oxygen absorption R-branch   
12 778.75 15 Atmosphere corrections    
13 865 20 Vegetation, water vapour reference   
14 885 10 Atmosphere corrections    
15 900 10 Water vapour, land   

Table 1. MERIS spectral characteristics: band centre and width 
The following figures defined the additional instrument characteristics: 

• Band-to-band registration: Less than 0.1 pixel  
• Band-centre knowledge accuracy: Less than 1 nm  
• Polarisation sensitivity: Less than 0.3%  
• Radiometric accuracy: Less than 2% of detected signal, relative to sun  
• Band-to-band accuracy: Less than 0.1%  
• Dynamic range: Up to albedo 1.0  

MERIS is onboard the ENVISAT platform with an helio-synchronic near polar orbit (Table 2). 

 
Orbit altitude (km) 799.8 
Repeat cycle (days) 35 
Period (min) 100.59 
Inclination (°) 98.55 
Equatorial descending node crossing time (hr) 10:00 

Table 2. Characteristics of the ENVISAT orbit 
MERIS scans the Earth's surface by the so called 'push broom' method. CCDs arrays provide 
spatial sampling in the across track direction, while the satellite's motion provides scanning in the 
along-track direction.  The Earth is imaged with a spatial resolution of 300 m (at nadir) that 
provides the full resolution data (FR). This resolution is reduced to 1200 m (reduced resolution: 
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RR) by the on board combination of four adjacent samples across track over four successive lines. 
The instrument's 68.5P

o
P field of view around nadir covers a swath width of 1150 km.  

2.2. The Products considered 
The products considered correspond to actual vegetation biophysical variables that are defined 
below: 

2.2.1. fAPAR 
Although not initially planed because there is already a MERIS fAPAR product, the MGVI (Gobron, 
Pinty et al., 2000), we included this fAPAR product within the initial list to be able to compare with 
MGVI and evaluate the consistency. fAPAR corresponds to the fraction of photosynthetically active 
radiation absorbed by the canopy. The fAPAR value results directly from the radiative transfer 
model in the canopy which is computed instantaneously and depends both on the canopy structure 
and illumination conditions. Therefore, fAPAR depends on the sun position. fAPAR is very useful 
as input to a number of primary productivity models based on simple efficiency considerations 
(Prince, 1991). Most of the primary productivity models using this efficiency concept are running at 
the daily time step. Consequently, the product definition should correspond to the daily integrated 
fAPAR value that can be approached by computation of the clear sky daily integrated fAPAR 
values as well as the fAPAR value computed for diffuse conditions. To improve the consistency 
with other fAPAR products that are sometimes considering the instantaneous fAPAR value at the 
time of the satellite overpass under clear sky conditions (e.g. MODIS). A study was proposed to 
investigate the differences between these several fAPAR definitions (Baret, Leroy et al., 2003). 
Results show that the instantaneous fAPAR value at 10:00 (or 14:00) solar time is very close to the 
daily integrated value under clear sky conditions. To keep a higher consistency with the fAPAR 
definition used in the CYCLOPES project, we decided to use the instantaneous fAPAR value at 
10:00 solar time under clear sky conditions. Note that fAPAR corresponds to the gap fraction in the 
sun direction assuming that the leaves are black, which is about the case in the PAR spectral 
domain. 
The variable fAPAR is relatively linearly related to reflectance values, and will be little sensitive to 
scaling issues. Note also that the fAPAR refers only to the green parts (leaf chlorophyll content 
higher that 15µg.cm-2) of the canopy.  

2.2.2. Cover fraction (fCover) 
It corresponds to the gap fraction for nadir direction. fCover is used for decoupling vegetation and 
soil in energy balance processes, including temperature and evapo-transpiration. This is also a 
secondary variable governed by the leaf area index and other canopy structural variables. It is a 
canopy intrinsic variable that does not depend on variables such as the geometry of illumination as 
compared to fAPAR. For this reason, it is a very good candidate for the replacement of classical 
vegetation indices for the monitoring of green vegetation. Because of its quasi-linear relationship 
with reflectances, fCover will be only marginally scale dependent (Weiss, Baret et al., 2000). Note 
that similarly to LAI and fAPAR, only the green elements (leaf chlorophyll content higher that 
15µg.cmP

-2
P) will be considered. 

2.2.3. Leaf Area Index (LAI) 
It defines the size of the interface for exchange of energy (including radiation) and mass between 
the canopy and the atmosphere. This is an intrinsic canopy primary variable. It is defined as half 
the developed area of green (leaf chlorophyll content higher than 15 µg.cmP

-2
P) vegetation elements 

per unit of horizontal soil (Privette, Morisette et al., 2001). LAI is strongly non linearly related to 
reflectance. Therefore, its estimation from remote sensing observations will be strongly scale 
dependent (Weiss, Baret et al., 2000), (Liang, 2000). Note that LAI of vegetation as estimated from 
remote sensing will include all the green contributors, i.e. including understory when existing under 
forest canopies. 
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2.2.4. The canopy chlorophyll content (LAI.Cab) 
The chlorophyll content is a very good indicator of stresses including nitrogen deficiencies. It is 
strongly related to leaf nitrogen content (Houlès, Mary et al., 2001). This quantity can be calculated 
both at the leaf level and at the canopy level by multiplication of the leaf level chlorophyll content 
by the leaf area index. In this case it is obviously an intrinsic secondary variable. Recent studies 
tend to prove that this product could be of very high interest in primary production models because 
it partly determines the photosynthetic efficiency (Green, Erickson et al., 2003). In addition, studies 
have demonstrated that a direct estimation of LAI.CBabB is more robust and accurate than an 
estimation based on the product of the individual estimates of LAI and CBabB (Weiss, Baret et al., 
2000). In addition, the medium resolution scale considered here, generally associated with 
heterogeneous pixels makes the product LAI.Cab more sound than the leaf level chlorophyll 
content: what would be the chlorophyll content of a pixel with half of very sparse canopy with very 
high leaf chlorophyll content and half of very dense canopy with very low leaf chlorophyll content? 
Therefore, the estimation of LAI.CBabB has been preferred to that of the leaf chlorophyll content. 

2.3. Requirements for the algorithm selection and design 
A review of current state of the art for the estimation of biophysical variables from remote sensing 
data (Baret, Bacour et al., 2003) allowed to drive requirements for the selection and design of the 
algorithm proposed in this study for MERIS level 2 products. The main issues required are 
presented below: 

• Explicit use of all the MERIS pertinent spectral information. The spectral sampling of 
MERIS provides potentially a higher level of information on canopy structure and optical 
properties of its elements as compared to the simple use of the classical red and near 
infrared bands implemented in most other retrieval approaches. The exploitation of the 
whole MERIS spectral information should hopefully allow to restrain the solution space and 
lead to a more robust and accurate retrieval.  

• Accuracy of the retrieval and computational efficiency. Among the several retrieval 
algorithms, those that are based on the minimisation of the distance in the space of canopy 
variables appeared to be optimal from the accuracy of the retrievals while being very 
efficient computationally wise. Therefore, techniques based on neural networks will be 
selected in this study. In addition, their limitation mainly driven by the necessity to have 
fixed number of input variables would not constitute any problem to process MERIS data up 
to level 2, if the geometrical configuration is input explicitly. Note that such techniques have 
already been implemented and lead to good retrieval performances (Weiss, Baret  et al., 
2002); (Baret, Weiss et al., 1997); (Combal, Baret et al., 2002); (Kimes, Gastellu-
Etchegorry et al., 2002).  

• Generation of the training data base. The training data base should sample all the 
vegetation types and conditions that can be observed from MERIS over land surfaces. In 
addition it should reflect the uncertainties in the reflectance values as observed by MERIS. 
Ideally, the training data base should therefore be made of MERIS observations that are 
paired with accurate ground measurements of the considered biophysical variables. 
However, because of the uncertainties attached to the ground measurements and the 
difficulty associated to the collection of such measurements over 300×300m² areas taken 
within a large range of vegetation types and conditions, this simple ‘experimental’ approach 
is not feasible. Therefore, the use of simulations by radiative transfer models would be 
preferable. The radiative transfer model should simulate within a good accuracy the 
atmosphere reflectance as observed within MERIS bands and geometry over most 
vegetation types and conditions that can be observed over the Earth. A particular attention 
should be brought on: 

 the leaf optical properties, particularly regarding the effect of the chlorophyll 
content on reflectance and transmittance, 

 the background reflectance that should include in addition to a large variety 
of soils. 
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• Quality assessment. Quantitative and qualitative indicators should be attached to the 
product so that the user could properly ‘weigh’ the data within his application according to 
the confidence he puts on. This could be achieved within several ways: 

o Quality of the L1B TOA reflectance used as input to the algorithm. This would 
simply correspond to the replication of indicators produced previously such as cloud 
occurrence and sensor problem. 

o Additional indicators based on: 

 The reflectance mismatch. This corresponds to the distance between the 
MERIS measured reflectance and that simulated by the radiative transfer 
models. If the distance is too large, then the reliability of the derived product 
will be questionable. 

 Product uncertainty. The algorithm provides a quantitative estimation of the 
uncertainty associated to the product.  

 Flags raised when the product appears to be out of the nominal range of 
variation. 

 

Figure 1. Flow chart showing how the products (B V̂ B) are generated operationally. ANN 
corresponds to Artificial Neural Network characterized par its structure and its coefficients 
(corresponding to the synaptic weights and bias); RBTOCB corresponds to the MERIS Top Of 
Atmosphere reflectance used in the operational mode and V correspond to the biophysical variable 
in the training data base and estimated by running the ANN over the simulated MERIS TOC 
reflectance and geometry. 
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2.4. Algorithm outline 
From the arguments previously developed in the ASCAR (Baret, Bacour et al., 2003), we propose 
to use neural networks to generate the MERIS level 2 products considered. For each product, one 
particular network will be calibrated. Two main steps are foreseen (Figure 1): 

• Training the neural network.  

• Operational use of the neural network. 
Note that in addition to the biophysical variables derived by the proposed algorithm, quality 
indicators will also be computed. This will be described in more details later. 

2.4.1. Training the neural network 
This process consists mainly in two steps: 
 Generation of the training data base 
 Defining the neural network architecture and adjusting the corresponding synaptic weight and 

biases. 

2.4.1.1. Generation of the training data base.  

The generation of the training data base corresponds to the most critical issue to be solved. As 
stated earlier, it should be based on accurate and representative simulations of the top of 
atmosphere reflectance and incorporate prior information on the distribution of the input variables. 
The same training data base will be used for all the products as well as the quality assessment 
criterions when applicable. The generation of the data base is mainly made within three steps: 

• Generation of the distribution of the input biophysical variables of the radiative 
transfer models. The distribution of the other input variables is derived from prior knowledge 
of their distribution. The geometrical observational conditions are defined by MERIS swath 
and the ENVISAT orbitography that depends on location and date. Locations and dates are 
randomly drawn to represent most of the conditions. 

• Simulating the MERIS TOC reflectance. A radiative transfer model is used to simulate the 
top of atmosphere reflectance in MERIS bands and observation conditions.  

• Computation of fCover, fAPAR and LAI·Cab. These secondary variables are computed by 
the radiative transfer model, as a function of canopy structure and its optical properties. 

Once these three steps are completed, the neural network will be actually trained. 

2.4.1.2. Training the neural network 

The training of the neural network consists in defining the optimal structure (typically the number of 
layers and the number of neurons per layers) and the corresponding coefficients (i.e. the synaptic 
weights and biases) that provide the best estimates of the biophysical variables. Dedicated tools 
are available to achieve this training, and this issue will be detailed later on. 
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2.4.2. Operational use of the neural network 
The neural network once trained will be run in operational mode. Four networks will produce in 
parallel estimates of the four biophysical variables considered. A complementary step will provide 
estimates of the associated uncertainties. Additionally, quality assessment indicators will also be 
generated: 

• Theoretical uncertainties: This represents the expected error expressed in RMSE 
between the estimated and the actual biophysical values. As a first approximation, this can 
be derived from the theoretical performances of the algorithm as evaluated over an 
independently simulated data set. 

• Quality indicators: These are a replication of the previously computed quality indicators, 
including those related to the cloud filtering and sensor possible problems. 
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3. Prototyping the algorithm 
In this section, the algorithmic elements used are described, including: 

• The definition of the inputs and outputs, 

• The radiative transfer models used 

• The inversion technique 

• The quality assessment 

3.1. Inputs and outputs 
This section lists the inputs required and the outputs provided by the algorithm.  

3.1.1. Inputs 
All these inputs are required for each pixel considered, the image being either full or reduced 
resolution. 

3.1.1.1. MERIS top of canopy reflectance.  

Because some wavebands are strongly affected by atmospheric processes while providing only 
marginal additional information on the canopy, they will be discarded from our analysis. Table 3 
lists the 13 bands that are used in the algorithm. 
 

 

Table 3. The 13 MERIS bands used in the algorithm. The bands appearing in grey are not 
used. 

 

Bands 1, 2, 11 and 15 were not used for the following reasons: 

• Bands 1 and 2 correspond to the sorter wavelengths were atmospheric correction 
accuracy is minimum. They would thus convey large uncertainties as well as little additional 
information on canopy characteristics. 

• Band 11. This very narrow band is just located in the oxygen absorption band at the end of 
chlorophyll absorption. It would bring only marginal additional information on leaf and 

# Centre (nm) Width (nm) Potential Applications 
1 412.5 10 Yellow substance and detrital pigments 
2 442.5 10 Chlorophyll absorption maximum   
3 490 10 Chlorophyll and other pigments   
4 510 10 Suspended sediment, red tides   
5 560 10 Chlorophyll absorption minimum   
6 620 10 Suspended sediment   
7 665 10 Chlorophyll absorption and fluo. reference  
8 681.25 7.5 Chlorophyll fluorescence peak  
9 708.75 10 Fluo. Reference, atmospheric corrections  

10 753.75 7.5 Vegetation, cloud  
11 760.625 3.75 Oxygen absorption R-branch   
12 778.75 15 Atmosphere corrections    
13 865 20 Vegetation, water vapour reference   
14 885 10 Atmosphere corrections    
15 900 10 Water vapour, land   
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background optical properties while conveying errors due to uncertainties in oxygen 
pressure values. 

• Band 15. This water absorption band will not bring very significant information on canopy 
characteristics as compared to bands 12 to 13 while also conveying errors due to 
uncertainties in water vapour values. 

3.1.1.2. MERIS geometry of observation. 

The following angles are required: 

• View zenith angle (θBvB),  

• Sun zenith angle (θBsB)  

• Relative azimuth angle between sun and view directions (φ).The cosine of this angle was 
used as an input to the NNET in order to keep its circular character. 

These angles derive from the ENVISAT orbitography and MERIS swath, as a function of the date 
of observation, expressed in day of the year (from 1 to 366), and of the location of the pixel, 
expressed in latitude and longitude. 

3.1.1.3. Quality indicators 

These indicators will come from the previous products. They mainly correspond to: 

• MERIS radiometric quality, including cloud snow and water flags. These flags will be used 
to turn on or off the algorithm in case of very poor radiometric quality, cloud contamination 
or water pixels.  

3.1.2. Outputs 
The outputs will be provided by application of the algorithm over each pixel and will include the 
following: 

3.1.2.1. Biophysical variables estimation 

It corresponds to the neural network derived fAPAR fCover, LAI, and LAI.CBabB values as described 
in §. 2.2. The range of variation and resolution steps proposed are presented in Table 4. 
 

Product Unit Minimum Maximum resolution 
fAPAR - 0 1.0 0.01 
fCover - 0 1.0 0.01 

LAI mP

2
P.mP

-2
P 0 6.0 0.01 

LAIxCBabB g.mP

-2
P 0 500 1 

Table 4. Minimum, maximum values and associated resolution for all the products 
considered. 

3.1.2.2. Quality indicators 

These indicators will provide information on the quality of:  

• The inputs used to compute the products. This includes  

o replication of previously computed indicators (clouds, type of surface, flags for 
MERIS radiometric quality, …),  

o information on aerosol optical thickness derived and associated uncertainties,  

• Product uncertainties, i.e. expected standard deviation of the estimates, 
• Out of range flags. In the case where the ANN provides biophysical variable estimates 

outside their definition range as defined in Table 4, a flag will be delivered and the 
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corresponding product value will be set to the closest bound of the range, i.e. either the 
minimum or the maximum accepted values. The uncertainty value will be set to 999. 

3.2. The training database 
The training data base consists in an ensemble of canopy reflectance spectra in the MERIS 

configurations of observation, together with the corresponding biophysical products. Ideally, the 
database must be representative of actual biomes and conditions as observed by MERIS. 
Nevertheless, the difficulty to conduct accurate ground measurements at such spatial resolution 
over a large range of surface types implies that the training database generally reduces to radiative 
transfer model simulations (Atzberger, 2004; Danson et al., 2003) with inherent empirical 
assumptions on the distributions of the variables. 

3.2.1. Radiative transfer model 
Radiative transfer model allows simulating both the top of canopy reflectances and the 

secondary canopy variables that are fAPAR and fCover. Although very realistic, complex 3D 
models appear difficult for simulating a very large range of canopy situations, because they require 
extensive parameterizations and are very computationally demanding. One dimensional canopy 
radiative transfer models that run very fast are more managable for the generation of the training 
database. They are based on a simple description of the canopy architecture that do not account 
for horizontal variations of the leaf area density corresponding to heterogeneous canopies. 

The widespread SAIL (Verhoef, 1984; Verhoef, 1985) and PROSPECT (Jacquemoud and Baret, 
1990) models are used to simulate reflectances in 11 MERIS narrow spectral bands centered at 
490, 510, 560, 620, 665, 681, 709, 754, 779, 865, and 885 nm, as well as fAPAR and fCover. The 
four additional wavebands of the MERIS instrument are not used here because they are too 
strongly affected by atmosphere effects. The top of canopy reflectance are simulated as a function 
of the configuration of observation and a limited number of variables describing its architecture: 
LAI, the mean leaf inclination angle (ALA), assuming an ellipsoidal distribution of foliage elements 
(Campbell, 1990), and the hot spot parameter (HotS) as implemented by Kuusk (1991). The optical 
properties of the leaves are simulated by PROSPECT. The version used here (Fourty and Baret, 
1997) depends on the leaf structure parameter (N), the chlorophyll a and b content (Cab in µg.cm-

2), the equivalent water thickness (Cw  in cm), the dry matter content (Cm  in g.cm-2), and the brown 
pigment concentration (Cbp in relative units). Background reflectance is described by one – among 
ten – standard soil reflectance spectrum (Liu et al., 2003), potentially combined with a typical snow 
or water spectrum, the presence of water and snow being exclusive. Such composite backgrounds 
are expected to occur frequently because of the medium spatial resolution of MERIS. Possible 
variations of the background reflectance are accounted for by a multiplicative brightness parameter 
(β). The latter is assumed wavelength independent and allows considering changes in the 
background optical properties, confounding the effects of geometrical conditions, roughness and 
moisture. An additional variable describing the fraction of ground covered by ‘pure’ vegetation 
(vCover) is introduced to represent some spatial heterogeneity within a pixel. A simulated scene is 
thus composed of a fraction of vegetation covering the background (reflectance Rveg) and a lower 
fraction of bare background (reflectance Rsoil similar to the one under the pure canopy); the 
reflectance R of the composite scene then expresses as: R = Rveg × vCover + Rsoil × (1-vCover). In 
total, the PROSPECT+SAIL model requires ten input variables to simulate the spectro-directional 
variation of the reflectance. Because no assumptions are made on the spatial resolution of the 
scene, the algorithm should therefore performs on MERIS data acquired both at full and reduced 
resolutions. 
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3.2.2. Simulations 
The input variables of the PROSPECT+SAIL model are set to follow Gaussian distributions 

within their respective definition interval (Table 5). The distributions derive from empirical 
knowledge and are assumed independent. In the case of LAI, this original distribution is modified in 
order to give more weight to low values: the distribution is set uniform for LAI values lower than the 
prescribed mean as it will be justified later. To reduce the degrees of freedom (and consequently 
the number of simulations of the training database), the leaf water content is tied to the dry matter 
content assuming that green leaves have a relative water content close to 80%. This is justified as 
leaf water has only marginal effect on TOC reflectances in the 11 MERIS.  
 

The geometry of observation (view and sun zenith angles; relative azimuth angle) is driven by 
the ENVISAT orbit characteristics and MERIS swath, then depending on location and date. The 
date is drawn uniformly within four periods of 42 days centred over the solstices and equinoxes. 
The determination of location relies on a network of 350 sites (Derive et al., 2003), chosen so as to 
sample all possible types of vegetation structure that can be encountered over the Earth’s surface. 
Finally, the fraction of surface covered by water or snow is determined according to empirical 
distribution laws that favour the soil as the dominant background type.  
 

  mean σ LB UB # classes 

N 1.5 1 1 4.5 3 

Cab (µg.cm-2) 50 50 15 100 4 

Cm (g.cm-2) 0.0075 0.0075 0.002 0.02 3 Le
av

es
 

Cbp 0 0.6 0 1.5 3 

So
i l β 0.8 0.3 0.3 1.3 3 

LAI 2.5 3.5 0 8 4 

ALA (°) 60 20 30 85 3 

HOT 0.1 0.3 0.0001 1 3 C
an

op
y 

vCover uniform 0.85 1 1 

Table 5: Distribution characteristics of the input variables along with the corresponding number of 
classes of the experimental plan used to simulate the training dataset with the PROSPECT+SAIL 
model. Truncated Gaussian distributions are used; they are characterized by their mean, standard 
deviation (σ), and lower (LB) and upper bounds (UB) of their variation range.  
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1 1.875 2.75 3.625 4.5

N

15 36.25 57.5 78.75 100

Cab

0.002 0.0065 0.011 0.0155 0.02

Cm

0 0.375 0.75 1.125 1.5

Cbp

0 2 4 6 8

LAI

30 43.75 57.5 71.25 85

ALA

0.3 0.55 0.8 1.05 1.3

β

0.001 0.25070.50050.7502 1

HotS

0.85 0.8875 0.925 0.9625 1

vCover

0.008 0.026 0.044 0.062 0.08

Cw

 
Figure 2: Probability distributions of the PROSPECT+SAIL input variables of the training 
database. 
 

The simulations correspond to several combinations of the above described input model 
variables and of the observation geometries. The corresponding various canopy situations are set 
according to a sampling scheme based on a full orthogonal experimental plan (Bacour et al., 
2002). For this purpose, the definition interval of each variable is split in a given number of classes. 
All combinations of classes are sampled once. This allows accounting for all the interactions 
between variables, while having their range of variation densely and near randomly populated. The 
generation of the database for the biophysical variables is performed by drawing randomly their 
actual values, with respect to the distribution laws specified above, within the pre-identified classes 
(Table 5Erreur ! Source du renvoi introuvable.). The distributions of the PROSPECT+SAIL input 
variables, and the corresponding simulated fAPAR, fCover are presented in Figure 2 and Figure 3. 
Despite the emphasis put on low LAI values, fAPAR and fCover distributions have more frequent 
higher values (Figure 3 a and b). Note that, in this study, fAPAR is defined as that observed at 
10:00 local solar time when the canopy is only illuminated by the sun (black sky). It is thus rather 
close to the black sky fAPAR values at the time of satellite overpass used by other products 
(MODIS, MGVI). It corresponds also to the value the closest to the daily integrated black sky value 
(results not shown here) required by the majority of users. A 4% Gaussian noise with no bias was 
added to the reflectances. It corresponds roughly to MERIS performances as evaluated over 
vicarious calibration exercises (Zurita-Milla et al., 2006). The distribution of reflectances in the 11 
MERIS bands show the contrast between the visible (lower values) and near infrared bands 
(higher values) with the red-edge bands being intermediate (Figure 3 c).  

0 0.25 0.5 0.75 1

a) fAPAR

0 0.25 0.5 0.75 1

b) fCover

0 0.25 0.5 0.75 1

c) Reflectance

 
Figure 3: Probability distributions of the simulated a) fAPAR, b) fCover, c) reflectances in the 11 
MERIS spectral bands (lines darken from the highest to the lowest waveband). 
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In total, 46533 simulations were performed. Half of these were randomly selected to compose 
the training database, the remaining half being split into the hyper-specialization and testing 
datasets. The hyper-specialization base is used during the learning process of the network to avoid 
over fitting the training dataset which would result in a lack of genericity. The testing base serves 
as an internal evaluation of the NN estimation performances.  

3.2.3. Neural network design 

3.2.3.1. Architecture and training 

Multilayer perceptrons are commonly used to interpret remote sensing measurements owing to 
their ability to approximate complete inverse functions (Abuelgasim et al., 1998; Gross et al., 2000; 
Kimes et al., 1998). A multilayer perceptron is here designed to jointly estimate fAPAR, fCover, 
LAI, and LAIx Cab. Using a single NN for estimating four biophysical variables at the same time 
rather than four different NNs, each specialized for a given variable, allows imposing an additional 
physical constraints to the inverse problem as the variables are not independent. This way, the NN 
is trained to learn the intrinsic relationships that link them together.  

 
The inputs of the network correspond to the reflectance in the 11 MERIS bands and the 3 

angles defining the observation geometry. The relative azimuth angle is expressed as its cosine 
function to preserve continuity with respect to the principal plane. The values x  of the 14 inputs 
and 4 outputs are standardized according to )(/).(66.0* xxxx σ−=  so that 80% of the 
standardized values ( *x ) fall within [-1; 1], x  being the mean of the variable determined on the 
training database, and σ(x) its standard deviation. For the reflectance data, x  and σ(x) are 
determined over all wavebands so as to maintain the relative proportions between them. The 
standardization aims at preventing any scaling factor problem between data of different physical 
nature, while increasing at the same time the convergence performances of the training algorithm. 

 
The training process (calibration of the NN coefficients) relies on the minimization of a misfit 

function by a back-propagation algorithm (Atkinson and Tatnall, 1997; Gross et al., 2000). The 
misfit function is here defined as the mean square error between the targeted variables (from the 
database) and the NN outputs. The optimal network architecture was determined after several 
trials, to provide the best estimation performances with the minimum number of layers and neurons 
per layers. The final network is made of one input layer with 14 linear neurons (one per input), two 
hidden layers of respectively 13 and 7 neurons with tangent sigmoid transfer functions, and one 
output layer with 4 linear neurons (one per variable to estimate). The combination of tangent 
sigmoid and linear transfer functions is used because it is recognized as capable of fitting any type 
of function.  

 
Posterior quality tests on the estimates are determined. First, if the retrieved value falls outside 

the definition range of the corresponding variable, it is strained to take the value of the closest 
bound. The second test is based on the assumption that LAI, fAPAR, and fCover, are physically 
interconnected: the distribution of the values taken by two of them are contained in a bounded 
bidimensional space. Therefore, whenever the estimates of the variables taken two by two will fall 
outside the corresponding bidimensional convex hull they will be discarded. The hulls are defined 
by the co-distribution of the variables from the training database.  
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3.3. Theoretical estimation performances 
The NN performances are evaluated on the testing dataset. As compared to the original co-

variations of the biophysical variables, these of the estimates are contained inside the central 
region of the convex hulls (Figure 4a), corresponding to the most probable values. Figure 4b 
presents the comparison of the true values of the biophysical variables with the NN estimates. The 
corresponding root mean square errors and coefficients of correlation (Table 6) appraise for the 
theoretical estimation uncertainties related to the inversion process. 

 

 fAPAR fCover LAI LAIxCab 
RMSE 0.06 0.09 1.15 77.44 

R 0.95 0.93 0.80 0.84 

Table 6: Root mean square errors and coefficients of correlation (R) between the NN estimates of 
fAPAR, fCover, LAI, and LAIxCab, and the true values from the testing database. 
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Figure 4: a - top) Scatter plots between the variables estimated on the testing base and 
corresponding convex hulls from the training database. b - bottom) Comparison between the 
values of the variables of the testing database and the corresponding NN estimates for fAPAR, 
fCover, LAI, and LAIxCab (µg.cm-2). Each inset is a bidimensional histogram where the gray level 
intensity increases with the density of points. 
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Figure 5: a) Distribution of the reflectance mismatch integrated over the 11 wavebands between 
the actual MERIS data and the simulated reflectance spectra of the training database, before 
(dashed grey line) and after cloud screening (black solid line). b) Reflectance mismatch averaged 
over all scenes for each MERIS channel. 
 

Regarding to the complexity of the inverse problem to solve and the high diversity of canopy 
realizations and observation geometries of the training database, the results show the ability of the 
neural inversion to retrieve fAPAR and fCover with a fairly good accuracy, thus confirming previous 
results (Weiss et al., 1999). The performances degrade for LAI and LAIxCab: the scattering around 
the 1:1 line increases with LAI or LAIxCab values and some underestimation is observed in these 
conditions. This feature is due to the non-linearity in the radiative transfer with respect to the 
canopy structural and optical characteristics. The radiometric signal saturates for high LAI values. 
In these cases, the NN logically underestimates LAI values (typically for LAI higher than 5). On 
another hand, the neural network is trained to globally estimate a variable without bias. This 
explains why intermediate LAI (values between 2-5) are generally slightly overestimated to 
compensate for the underestimation that occurs for the larger LAI values. The modification of the 
initial Gaussian LAI distribution in the training database is here justified a posteriori : it allows giving 
more weights to the low and intermediate values in the training process.  

3.4. Quality Assessment 
A brief list of quality assessment criterions was presented in §. 2.3. In this section, more details are 
provided except for the product uncertainties and reflectance mis-match that will be described 
along with the algorithm prototyping section §. 4.2. 

• Quality indicators. The same quality indicators to those presented as inputs will be 
replicated as outputs. 

• Out of range flag. In the case where the ANN provides biophysical variable estimates 
outside their definition range a flag will be triggered. The corresponding product value will 
be set to the closest bound of the range, i.e. either the minimum or the maximum accepted 
values. The product uncertainty value will be set to 999. 

• Product uncertainties The uncertainties associated to each biophysical variable are also 
coded with the same resolution as that used for the biophysical variables presented in 
Table 4. The way they will be derived will be presented in §. 4.3. 

• Spectra out of the training domain. When the L1B MERIS reflectance spectra appears to 
be out of the definition domain of the training data base, a flag is raised..  
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4. Conclusion 
This ATBD provides a description of the TOC_VEG algorithm used to compute fAPAR, fCover, 
LAI, and LAI.Cab products from MERIS top of canopy reflectance data both at full and reduced 
spatial resolution. The performances of this TOC_VEG algorithm were evaluated over an 
independently simulated data set. They show accurate estimates for fAPAR and fCover, 
independent from the value of the variable. However, LAI and LAI.Cab show less accurate 
estimates, particularly for the larger LAI or LAI.Cab values. This is obviously due to the physics of 
the radiative transfer, although improvements could be foreseen by adaptation of the training data 
base, with probably more cases with larger LAI values.  
This algorithm was validated using actual MERIS observations. The corresponding results are 
reported in a separate document (Baret, Weiss et al., 2006).  
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