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Executive summary 

This ATBD (Algorithm Theoretical Based Document) describes the proposed algorithm for Level 2 
biophysical land products derived from MERIS top of atmosphere reflectance data with justification 
of the choices made. The biophysical land products considered are the following set of biophysical 
variables: LAI, fCover, CBabB and LAI.CBabB. The algorithm accepts as inputs the top of atmosphere 
reflectances as directly derived from MERIS L1b images. It applies both to full and reduced 
resolution MERIS images.  
 
The proposed algorithm called here TOA_VEG is based on the training of neural networks over a 
data base simulated using radiative transfer models. The SAIL, PROSPECT and SMAC models 
are coupled and used to simulate the reflectance in the 13 MERIS bands considered (412 nm, 442 
nm, 490 nm, 510 nm, 560 nm, 620 nm, 665 nm, 681.25 nm, 708.75 nm, 753.75 nm, 778.75 nm, 
865 nm, 885 nm). The oxygen and water absorption bands have not been used because they 
would convey significant uncertainties associated while providing only marginal information on the 
surface. The background optical properties are simulated using a collection of soil, water and snow 
typical reflectance spectra. A brightness factor is used to provide additional flexibility of the 
background reflectance. Finally, to account for the medium resolution of MERIS observations, 
mixed pixels are simulated with variable fractions of pure background and pure vegetation.  
 
The simulation of the top of atmosphere reflectance in the 13 MERIS bands requires 15 input 
variables. They were drawn randomly according to an experimental plan aiming at getting a more 
evenly populated space of canopy realization. To provide more robust performances of the 
network, the distributions of each input variable was close to the actual distributions and, when 
possible, realistic co-distributions were also used. This was achieved by considering a 
representative distribution of targets over the earth surface that constrains the observation 
geometry, as well as possible vegetation amount. A total number of 129600 cases were simulated. 
Half of this data set was used for training, one quarter to evaluate hyper-specialization, and the last 
quarter to quantify the theoretical performances. The data base was further streamlined according 
to the expected relationship between LAI and fAPAR, as well as using an actual MERIS L1B 
observation data sets. This resulted in the elimination of about 24% of the cases simulated. 
 
Back-propagation neural networks were trained for each variable considered. The architecture was 
optimized, resulting in 2 hidden layers of tangent-sigmoid neurones corresponding to a total around 
220 coefficients to adjust, and providing a good ratio (≈400) with the size of the training data base.  
 
The theoretical performances were evaluated over the test simulated data set. It allowed providing 
estimates of uncertainties. They are close to 0.06 (absolute value) for fAPAR and 0.08 for fCover, . 
For LAI, the rmse is close to 0.8 (absolute value) and to 53 for LAI.Cab that shows some loss of 
sensitivity for the larger values of LAI and LAI.Cab due to saturation effects. 
 
Finally, quality assessment criterions are proposed, including the theoretical uncertainties on the 
product, the reflectance mismatch quantifying the agreement with the training data base, and flags 
indicating possible values out of range. 
 
This algorithm is to be implemented within the BEAM toolbox. 
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Symbols and Acronyms 

1D One directional radiative transfer model 
3D Three directional radiative transfer model 
ALA Average Leaf inclination Angle 
albedo fraction of reflected radiation integrated over view direction & wavelength 
ANN Artificial Neural Network 
ATBD Algorithm theoretical based Document 
ASCAR Algorithm Survey and Critical Analysis Report 
BRDF Bidirectional Reflectance Distribution Function 
C Biophysical variables covariance matrix of (used in the cost function) 
CBabB Leaf chlorophyll content 
CBbpB Leaf brown pigment content 
CBmB Leaf dry matter content 
CBwB Leaf water content 
CBiB Content of constituent i per unit leaf area 
CYTTARES Cyclopes Training and Testing Algorithm Reference Ensemble of Sites 
DPM Detailed Processing Methods 
ENVISAT Environment Satellite 
fAPAR Fraction of Absorbed Photosynthetically Active Radiation 
FR Full resolution (300m) 
H Background moisture 
HOT Hot spot parameter (leaf size relative to canopy height) 
fCover Fraction of vegetation cover 
IODD Input Output Description Document 
K Absorption coefficient used in the leaf model 
kBiB Specific absorbtion coefficient for constituent i 
L2 Level 2 product 
L3 Level 3 product 
LAI Leaf Area Index 
LB Lower Bound 
LUT Look Up Table 
MERIS Medium resolution imaging spectrometer 
MGVI MERIS Global Vegetation Index 
MISR Multi-angular Imaging Spectroradiometer 
MODIS Moderate Imaging Spectrometer 
M*BinputB Matrix of normalised inputs of the Aritifical Neural Network 
N Leaf structure parameter 
NDVI Normalized Difference Vegetation Index 
NNT Neural Network Technique 
PROSPECT A leaf optical properties model 
RMSE Root Mean Square Error 
nR  TOC Reflectance measured in configuration n 

RBbB Soil background reflectance 
RBsnowB Reflectance of snow 
B

sims
TOCR B Simulated top of canopy reflectance 

RBTOCB Top of canopy reflectance 
B *TOCR B Normalized top of canopy reflectance 
RBvegB Reflectance of the vegetation part of a simulated scene 
RR Reduced Resolution (1200m) 
RTM Radiative Transfer Model 
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SAIL Scattering by Arbitrarily inclined Leaves (a 1D radiative transfer model) 
SLA Specific leaf area 
SLW Specific leaf weight 
TOA Top of Atmosphere 
TOC Top of Canopy 
TOA_VEG This algorithm 
UB Upper Bound 
VP

max
P Maximum value of the variable V 

VP

min
P Minimum value of the variable V 

VI Vegetation Index 
z Background roughness 
φ  view azimuth angle relative to the illumination direction 
σ  Standard deviation 
sθ  Sun zenith angle 
*sθ  Normalized sun zenith angle 

vθ  View zenith angle 
*vθ  Normalized view zenith angle 

Ω Illumination and view geometrical configuration 
λ wavelength 
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1. Introduction 
The MERIS sensor launched in 2002 by the European Space Agency provides unique spectral 
spatial and temporal characteristics that will make it a very efficient tool for the global monitoring of 
land surfaces (Rast, Bézy et al., 1999). However, if the potential is high, there were currently no 
proper products corresponding to biophysical variables to characterize vegetation. The European 
Space Agency has therefore supported this study dedicated to the development of level 2 
biophysical products from MERIS observations acquired both at full and reduced resolutions. 
 
The objective of this document is to provide a detailed description and justification of the algorithm 
proposed to derive level 2 products from MERIS observations. These products correspond to the 
following set of biophysical variables: LAI, fCover, CBabB and LAIxCBabB.  

The proposed algorithm follows the recommendations issued in the ASCAR document (Algorithm 
Survey and Critical Analysis Report) (Baret, Bacour et al., 2003) that was reviewing the current 
algorithms implemented for several sensors. A validation document is also available, that presents 
preliminary evaluation evidences, and draws few conclusions on the performances of the 
algorithm. 
 
This algorithm is by nature very similar to the one proposed for exploiting top of canopy MERIS 
reflectances (Baret, Bacour et al., 2005). However, its main advantage is to be able to estimate the 
biophysical variables considered directly from L1b MERIS products within one single step. 

This ATBD document is split in 3 main sections: 

1. Algorithm overview. This section contains: 

• A brief description of MERIS main characteristics 

• A definition of the proposed products that could apply both to FR (full resolution) 
and RR (reduced resolution) MERIS L1b images. 

• The outline of the algorithm. 

2. Description of the algorithm. This section contains: 

• The inputs required and outputs provided by the algorithm. 

• The reflectance models used. The SAIL canopy reflectance model is used along 
with the PROSPECT model for the leaf optical properties. The background is 
described using reference reflectance spectra of soil, modulated using a brightness 
parameter. In addition, the mixed nature of the medium resolution MERIS pixels is 
considered here by introducing a vegetation cover fraction. The SMAC model is 
then used to simulate the top of atmosphere reflectance from the surface 
reflectance. 

• The inversion technique used. Neural network techniques will constitute the core of 
the operational algorithm. Quality indicators are also provided. 

3. Algorithm prototyping. In this section the training data base on which the networks are 
calibrated is described. It is made of reflectance simulations achieved with the radiative 
transfer models presented above. The theoretical performances are finally described. 
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2. Algorithm overview 
2.1. Instrument characteristics 
MERIS is a medium spatial resolution imaging spectrometer operating in the solar reflective 
spectral range. Fifteen spectral bands are routinely acquired in the 390 nm to 1040 nm spectral 
range (see Table 1).  As compared to other medium resolution instruments, his spectral sampling 
is very unique and the algorithm developed hereafter will take full advantage of this design.  

 

# Centre (nm) Width (nm) Potential Applications   
1 412.5 10 Yellow substance and detrital pigments 
2 442.5 10 Chlorophyll absorption maximum   
3 490 10 Chlorophyll and other pigments   
4 510 10 Suspended sediment, red tides   
5 560 10 Chlorophyll absorption minimum   
6 620 10 Suspended sediment   
7 665 10 Chlorophyll absorption and fluo. reference  
8 681.25 7.5 Chlorophyll fluorescence peak  
9 708.75 10 Fluo. Reference, atmospheric corrections  

10 753.75 7.5 Vegetation, cloud  
11 760.625 3.75 Oxygen absorption R-branch   
12 778.75 15 Atmosphere corrections    
13 865 20 Vegetation, water vapour reference   
14 885 10 Atmosphere corrections    
15 900 10 Water vapour, land   

Table 1. MERIS spectral characteristics: band centre and width 
The following figures defined the additional instrument characteristics: 

• Band-to-band registration: Less than 0.1 pixel  
• Band-centre knowledge accuracy: Less than 1 nm  
• Polarisation sensitivity: Less than 0.3%  
• Radiometric accuracy: Less than 2% of detected signal, relative to sun  
• Band-to-band accuracy: Less than 0.1%  
• Dynamic range: Up to albedo 1.0  

MERIS is onboard the ENVISAT platform with an helio-synchronic near polar orbit (Table 2). 

 
Orbit altitude (km) 799.8 
Repeat cycle (days) 35 
Period (min) 100.59 
Inclination (°) 98.55 
Equatorial descending node crossing time (hr) 10:00 

Table 2. Characteristics of the ENVISAT orbit 
MERIS scans the Earth's surface by the so called 'push broom' method. CCDs arrays provide 
spatial sampling in the across track direction, while the satellite's motion provides scanning in the 
along-track direction.  The Earth is imaged with a spatial resolution of 300 m (at nadir) that 
provides the full resolution data (FR). This resolution is reduced to 1200 m (reduced resolution: 



 
MERIS ATBD TOA_VEG_V3                                                                                                        March 2006 

9

RR) by the on board combination of four adjacent samples across track over four successive lines. 
The instrument's 68.5P

o
P field of view around nadir covers a swath width of 1150 km.  

2.2. The Products considered 
The products considered correspond to actual vegetation biophysical variables that are defined 
below: 

2.2.1. fAPAR 
Although not initially planed because there is already a MERIS fAPAR product, the MGVI (Gobron, 
Pinty et al., 2000), we included this fAPAR product within the initial list to be able to compare with 
MGVI and evaluate the consistency. fAPAR corresponds to the fraction of photosynthetically active 
radiation absorbed by the canopy. The fAPAR value results directly from the radiative transfer 
model in the canopy which is computed instantaneously and depends both on the canopy structure 
and illumination conditions. Therefore, fAPAR depends on the sun position. fAPAR is very useful 
as input to a number of primary productivity models based on simple efficiency considerations 
(Prince, 1991). Most of the primary productivity models using this efficiency concept are running at 
the daily time step. Consequently, the product definition should correspond to the daily integrated 
fAPAR value that can be approached by computation of the clear sky daily integrated fAPAR 
values as well as the fAPAR value computed for diffuse conditions. To improve the consistency 
with other fAPAR products that are sometimes considering the instantaneous fAPAR value at the 
time of the satellite overpass under clear sky conditions (e.g. MODIS). A study was proposed to 
investigate the differences between these several fAPAR definitions (Baret, Leroy et al., 2003). 
Results show that the instantaneous fAPAR value at 10:00 (or 14:00) solar time is very close to the 
daily integrated value under clear sky conditions. To keep a higher consistency with the fAPAR 
definition used in the CYCLOPES project, we decided to use the instantaneous fAPAR value at 
10:00 solar time under clear sky conditions. Note that fAPAR corresponds to the gap fraction in the 
sun direction assuming that the leaves are black, which is about the case in the PAR spectral 
domain. 
The variable fAPAR is relatively linearly related to reflectance values, and will be little sensitive to 
scaling issues. Note also that the fAPAR refers only to the green parts (leaf chlorophyll content 
higher that 15µg.cm-2) of the canopy.  

2.2.2. Cover fraction (fCover) 
It corresponds to the gap fraction for nadir direction. fCover is used for decoupling vegetation and 
soil in energy balance processes, including temperature and evapo-transpiration. This is also a 
secondary variable governed by the leaf area index and other canopy structural variables. It is a 
canopy intrinsic variable that does not depend on variables such as the geometry of illumination as 
compared to fAPAR. For this reason, it is a very good candidate for the replacement of classical 
vegetation indices for the monitoring of green vegetation. Because of its quasi-linear relationship 
with reflectances, fCover will be only marginally scale dependent (Weiss, Baret et al., 2000). Note 
that similarly to LAI and fAPAR, only the green elements (leaf chlorophyll content higher that 
15µg.cmP

-2
P) will be considered. 

2.2.3. Leaf Area Index (LAI) 
It defines the size of the interface for exchange of energy (including radiation) and mass between 
the canopy and the atmosphere. This is an intrinsic canopy primary variable. It is defined as half 
the developed area of green (leaf chlorophyll content higher than 15 µg.cmP

-2
P) vegetation elements 

per unit of horizontal soil (Privette, Morisette et al., 2001). LAI is strongly non linearly related to 
reflectance. Therefore, its estimation from remote sensing observations will be strongly scale 
dependent (Weiss, Baret et al., 2000), (Liang, 2000). Note that LAI of vegetation as estimated from 
remote sensing will include all the green contributors, i.e. including understory when existing under 
forest canopies. 
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2.2.4. The canopy chlorophyll content (LAI.Cab) 
The chlorophyll content is a very good indicator of stresses including nitrogen deficiencies. It is 
strongly related to leaf nitrogen content (Houlès, Mary et al., 2001). This quantity can be calculated 
both at the leaf level and at the canopy level by multiplication of the leaf level chlorophyll content 
by the leaf area index. In this case it is obviously an intrinsic secondary variable. Recent studies 
tend to prove that this product could be of very high interest in primary production models because 
it partly determines the photosynthetic efficiency (Green, Erickson et al., 2003). In addition, studies 
have demonstrated that a direct estimation of LAI.CBabB is more robust and accurate than an 
estimation based on the product of the individual estimates of LAI and CBabB (Weiss, Baret et al., 
2000). In addition, the medium resolution scale considered here, generally associated with 
heterogeneous pixels makes the product LAI.Cab more sound than the leaf level chlorophyll 
content: what would be the chlorophyll content of a pixel with half of very sparse canopy with very 
high leaf chlorophyll content and half of very dense canopy with very low leaf chlorophyll content? 
Therefore, the estimation of LAI.CBabB has been preferred to that of the leaf chlorophyll content. 

2.3. Full or reduced resolution 
Although it would have been possible to present algorithm specifically tuned for the reduced or full 
spatial resolution, we will not make any difference between these two resolutions: The same 
algorithm is expected to work similarly both on FR and RR images. This is simply proven by the 
fact that any full resolution spectra could be found with a very good match in the aggregated 
reduced resolution image. To demonstrate this important finding a particular study was conducted. 
 

Site name Lat (°) Long (°) Date surface type size pixels)
North-Spain 43.11 -1.46 28/05/05 Forests-grassland 700x700
North France 46.62 1.39 28/05/05 Forests-crops 700x700
North Chile -17.22 -66.45 28/05/05 Forests-grassland 500x500
Central Africa 13.58 -2.03 16/05/05 tropical forests 500x500
East Argentina -36.90 -58.21 04/11/03 forests 300x300
East Finland 57.43 26.38 14/05/04 forests 700x700
South France 44.68 4.17 15/05/04 forests-crops 300x300
North Chile -17.07 -68.34 02/05/05 forests 600x600
West Russia 46.18 39.17 14/09/04 crops 300x300
North Spain 44.12 0.63 25/05/05 crops 300x300  

Table 3. The sites used to investigate the spatial resolution 
 
Ten MERIS FR images were considered, representing a large range of variation of the surface 
conditions. The images were mostly clear, but few images were showing small cloud fraction 
(Table 3). Then, the corresponding RR images were simulated by aggregating the FR images by 
cells of 4x4 pixels. For each of the 10 sites, 200 pixels were randomly selected in the FR images. 
The pixel showing the closest reflectance spectra (quadratic distance) in the RR images was 
identified. The same process was repeated over the 10 scenes, representing a total of 2000 FR 
pixels and the residuals for each band between the FR and closest RR reflectance was computed. 
Figure 1 shows that for this representative set of pixels, it is possible to approximate any of the FR 
reflectance spectra by one of the one of the RR image. Therefore, it is concluded that if the 
algorithm applies on the RR images, it should also apply to the FR images in a very similar way. 
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Figure 1. Residuals between reflectance spectra of the FR images and the closest one in the RF 
images. Box plot representation: the box corresponds to 50% of the cases, and the whiskers to 
99%. Red ‘plus’ correspond to individual outliers. 

2.4. Requirements for the algorithm selection and design 
A review of current state of the art for the estimation of biophysical variables from remote sensing 
data (Baret, Bacour et al., 2003) allowed to drive requirements for the selection and design of the 
algorithm proposed in this study for MERIS level 2 products. The main issues required are 
presented below: 

• Explicit use of all the MERIS pertinent spectral information. The spectral sampling of 
MERIS provides potentially a higher level of information on canopy structure and optical 
properties of its elements as compared to the simple use of the classical red and near 
infrared bands implemented in most other retrieval approaches. The exploitation of the 
whole MERIS spectral information should hopefully allow to restrain the solution space and 
lead to a more robust and accurate retrieval.  

• Accuracy of the retrieval and computational efficiency. Among the several retrieval 
algorithms, those that are based on the minimisation of the distance in the space of canopy 
variables appeared to be optimal from the accuracy of the retrievals while being very 
efficient computationally wise. Therefore, techniques based on neural networks will be 
selected in this study. In addition, their limitation mainly driven by the necessity to have 
fixed number of input variables would not constitute any problem to process MERIS data up 
to level 2, if the geometrical configuration is input explicitly. Note that such techniques have 
already been implemented and lead to good retrieval performances (Weiss, Baret  et al., 
2002); (Baret, Weiss et al., 1997); (Combal, Baret et al., 2002); (Kimes, Gastellu-
Etchegorry et al., 2002).  

• Generation of the training data base. The training data base should sample all the 
vegetation types and conditions that can be observed from MERIS over land surfaces. In 
addition it should reflect the uncertainties in the reflectance values as observed by MERIS. 
Ideally, the training data base should therefore be made of MERIS observations that are 

12         13        14
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paired with accurate ground measurements of the considered biophysical variables. 
However, because of the uncertainties attached to the ground measurements and the 
difficulty associated to the collection of such measurements over 300×300m² areas taken 
within a large range of vegetation types and conditions, this simple ‘experimental’ approach 
is not feasible. Therefore, the use of simulations by radiative transfer models would be 
preferable. The radiative transfer model should simulate within a good accuracy the 
atmosphere reflectance as observed within MERIS bands and geometry over most 
vegetation types and conditions that can be observed over the Earth. A particular attention 
should be brought on: 

 the leaf optical properties, particularly regarding the effect of the chlorophyll 
content on reflectance and transmittance, 

 the background reflectance that should include in addition to a large variety 
of soils. 

• Quality assessment. Quantitative and qualitative indicators should be attached to the 
product so that the user could properly ‘weigh’ the data within his application according to 
the confidence he puts on. This could be achieved within several ways: 

o Quality of the L1b TOA reflectance used as input to the algorithm. This would simply 
correspond to the replication of indicators produced previously such as cloud 
occurrence and sensor problem. 

o Additional indicators based on: 

 The reflectance mismatch. This corresponds to the distance between the 
MERIS measured reflectance and that simulated by the radiative transfer 
models. If the distance is too large, then the reliability of the derived product 
will be questionable. 

 Product uncertainty. The algorithm provides a quantitative estimation of the 
uncertainty associated to the product.  

 Flags raised when the product appears to be out of the nominal range of 
variation. 

 

Figure 2. Flow chart showing how the products (B V̂ B) are generated operationally. ANN 
corresponds to Artificial Neural Network characterized par its structure and its coefficients 
(corresponding to the synaptic weights and bias); RBTOCB corresponds to the MERIS Top Of 
Atmosphere reflectance used in the operational mode and V correspond to the biophysical variable 
in the training data base and estimated by running the ANN over the simulated MERIS TOA 
reflectance and geometry. 
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2.5. Algorithm outline 
From the arguments previously developed in the ASCAR (Baret, Bacour et al., 2003), we propose 
to use neural networks to generate the MERIS level 2 products considered. For each product, one 
particular network will be calibrated. Two main steps are foreseen (Figure 2): 

• Training the neural network.  

• Operational use of the neural network. 
Note that in addition to the biophysical variables derived by the proposed algorithm, quality 
indicators will also be computed. This will be described in more details later. 

2.5.1. Training the neural network 
This process consists mainly in two steps: 
 Generation of the training data base 
 Defining the neural network architecture and adjusting the corresponding synaptic weight and 

biases. 

2.5.1.1. Generation of the training data base.  

The generation of the training data base corresponds to the most critical issue to be solved. As 
stated earlier, it should be based on accurate and representative simulations of the top of 
atmosphere reflectance and incorporate prior information on the distribution of the input variables. 
The same training data base will be used for all the products as well as the quality assessment 
criterions when applicable. The generation of the data base is mainly made within three steps: 

• Generation of the distribution of the input biophysical variables of the radiative 
transfer models. The distribution of the other input variables is derived from prior knowledge 
of their distribution. The geometrical observational conditions are defined by MERIS swath 
and the ENVISAT orbitography that depends on location and date. Locations and dates are 
randomly drawn to represent most of the conditions. 

• Simulating the MERIS TOA reflectance. A radiative transfer model is used to simulate the 
top of atmosphere reflectance in MERIS bands and observation conditions.  

• Computation of fCover, fAPAR and LAI·Cab. These secondary variables are computed by 
the radiative transfer model, as a function of canopy structure and its optical properties. 

Once these three steps are completed, the neural network will be actually trained. 

2.5.1.2. Training the neural network 

The training of the neural network consists in defining the optimal structure (typically the number of 
layers and the number of neurons per layers) and the corresponding coefficients (i.e. the synaptic 
weights and biases) that provide the best estimates of the biophysical variables. Dedicated tools 
are available to achieve this training, and this issue will be detailed later on. 
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2.5.2. Operational use of the neural network 
The neural network once trained will be run in operational mode. Four networks will produce in 
parallel estimates of the four biophysical variables considered. A complementary step will provide 
estimates of the associated uncertainties. Additionally, quality assessment indicators will also be 
generated: 

• Reflectance mis-match: This represents the consistency of the measured MERIS 
reflectance with that simulated in the training data base. 

• Theoretical uncertainties: This represents the expected error expressed in RMSE 
between the estimated and the actual biophysical values. As a first approximation, this can 
be derived from the theoretical performances of the algorithm as evaluated over an 
independently simulated data set. 

• Quality indicators: These are a replication of the previously computed quality indicators, 
including those related to the cloud filtering and sensor possible problems. 
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3. Description of the algorithmic elements 
In this section, the algorithmic elements used are described, including: 

• The definition of the inputs and outputs, 

• The radiative transfer models used 

• The inversion technique 

• The quality assessment 

3.1. Inputs and outputs 
This section lists the inputs required and the outputs provided by the algorithm.  

3.1.1. Inputs 
All these inputs are required for each pixel considered, the image being either full or reduced 
resolution. 

3.1.1.1. MERIS top of atmosphere reflectance.  

Because some wavebands are strongly affected by atmospheric processes while providing only 
marginal additional information on the canopy, they will be discarded from our analysis. Table 3 
lists the 13 bands that are used in the algorithm. 
 

# Centre (nm) Width (nm) Potential Applications 
1 412.5 10 Yellow substance and detrital pigments 
2 442.5 10 Chlorophyll absorption maximum   
3 490 10 Chlorophyll and other pigments   
4 510 10 Suspended sediment, red tides   
5 560 10 Chlorophyll absorption minimum   
6 620 10 Suspended sediment   
7 665 10 Chlorophyll absorption and fluo. reference  
8 681.25 7.5 Chlorophyll fluorescence peak  
9 708.75 10 Fluo. Reference, atmospheric corrections  

10 753.75 7.5 Vegetation, cloud  
11 760.625 3.75 Oxygen absorption R-branch   
12 778.75 15 Atmosphere corrections    
13 865 20 Vegetation, water vapour reference   
14 885 10 Atmosphere corrections    
15 900 10 Water vapour, land   

Table 4. The 13 MERIS bands used in the algorithm. The bands appearing in grey are not 
used. 

 
Bands 11 and 15 were not used for the following reasons: 

• Band 11. This very narrow band is just located in the oxygen absorption band at the end of 
chlorophyll absorption. It would bring only marginal additional information on leaf and 
background optical properties while conveying errors due to uncertainties in oxygen 
pressure values. 
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• Band 15. This water absorption band will not bring very significant information on canopy 
characteristics as compared to bands 12 to 13 while also conveying errors due to 
uncertainties in water vapour values. 

3.1.1.2. MERIS geometry of observation. 

The following angles are required: 

• View zenith angle (θBvB),  

• Sun zenith angle (θBsB)  

• Relative azimuth angle between sun and view directions (φ).The cosine of this angle was 
used as an input to the NNET in order to keep its circular character. 

These angles derive from the ENVISAT orbitography and MERIS swath, as a function of the date 
of observation, expressed in day of the year (from 1 to 366), and of the location of the pixel, 
expressed in latitude and longitude. 

3.1.1.3. Additional atmosphere characteristics 

Tests have been conducted to evaluate the interest of using additional atmosphere characteristics 
as inputs to the network (pressure, water vapor or ozone content). Results show that the 
performances are generally not improved as compared to the implicit use of these variables (Baret, 
Pavageau et al., 2004). It was therefore decided not to use explicitly these additional atmospheric 
characteristics as inputs. Additionally this eases considerably the implementation of the algorithm 
while inducing only marginal decrease of the performances as evaluated theoretically. 

3.1.1.4. Quality indicators 

These indicators will come from the previous products. They mainly correspond to: 

• MERIS radiometric quality, including cloud snow and water flags. These flags will be used 
to turn on or off the algorithm in case of very poor radiometric quality, cloud contamination 
or water pixels.  

3.1.2. Outputs 
The outputs will be provided by application of the algorithm over each pixel and will include the 
following: 

3.1.2.1. Biophysical variables estimation 

It corresponds to the neural network derived fAPAR fCover, LAI, and LAI.CBabB values as described 
in §. 2.2. The range of variation and resolution steps proposed are presented in Table 5. 
 

Product Unit Minimum Maximum resolution 
fAPAR - 0 1.0 0.01 
fCover - 0 1.0 0.01 

LAI mP

2
P.mP

-2
P 0 6.0 0.01 

LAIxCBabB g.mP

-2
P 0 500 1 

Table 5. Minimum, maximum values and associated resolution for all the products 
considered. 

3.1.2.2. Quality indicators 

These indicators will provide information on the quality of:  

• The inputs used to compute the products. This includes  

o replication of previously computed indicators (clouds, type of surface, flags for 
MERIS radiometric quality, …),  
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o information on aerosol optical thickness derived and associated uncertainties,  

• reflectance mis-match indicating the consistency of the MERIS measured TOC 
reflectance with that of the data base used to train the operational neural networks. 

• Product uncertainties, i.e. expected standard deviation of the estimates, 
• Out of range flags. In the case where the ANN provides biophysical variable estimates 

outside their definition range as defined in Table 4, a flag will be delivered and the 
corresponding product value will be set to the closest bound of the range, i.e. either the 
minimum or the maximum accepted values. The uncertainty value will be set to 999. 

3.2. Reflectance models 
Physically based radiative transfer models are considering 3 main components that will be 
described separately in the following: 

• The leaf optical properties 

• The canopy structure 

• The background reflectance 

3.2.1. Leaf optical properties 
To estimate the chlorophyll content from canopy reflectance, chlorophyll content has to be explicitly 
introduced into the radiative transfer model to be used. Because of its versatility and performances, 
the PROSPECT model (Jacquemoud and Baret, 1990) with the updated absorption coefficients 
proposed by (Fourty and Baret, 1997) appears therefore to be a good candidate.  
Note that the PROSPECT model considers the leaf as a lambertian surface. (Sanz, Espana et al., 
1997) showed that leaves were mainly characterized by a specular behaviour in addition to an 
important diffuse scattering process that takes place within the leaf. These authors demonstrated 
that, except in the specular direction, the lambertian approximation was valid in all other view 
directions. In addition, PROSPECT assumes that the optical properties of both leaf faces are 
equal.  
Several authors (Fourty and Baret, 1997; Jacquemoud and Baret, 1990; Newnham and Burt, 2001) 
have successfully validated the model over broadleaf types. In addition, the PROSPECT model 
provides a reasonable description of the optical properties of the needles, even though the basic 
assumptions associated to the plate model are obviously violated (Zarco-Tejada, Miller et al., 
2001). The following variables are required as input to the PROSPECT model: 

• N leaf mesophyll structure index. It varies between 1.0 for the most compact leaves 
(such as young cereal leaves) up to 3.5 for thick leaves with well developed spongy 
mesophyll or event senescent leaves having disorganized mesophyll with large amount of 
air spaces. 

• CBabB Leaf Chlorophyll content (µg.cmP

-2
P). It actually corresponds to the content of 

chlorophyll a, chlorophyll b and carotenoids (Fourty and Baret, 1997). Note that chlorophyll 
a and b are generally strongly correlated. The same is observed between chlorophyll a and 
b and carotenoids, particularly for medium to large chlorophyll content values. It basically 
varies between 0 to 100µg.cmP

-2
P, although a threshold value of 15µg.cmP

-2
P has been 

proposed to consider a leaf as ‘green’. 

• CBdmB Leaf dry matter content (g.cmP

-2
P). Dry matter absorbs over the whole spectral 

domain, and its effect will be maximal in the near infrared region. The leaf dry matter 
content is also called the specific leaf weight (SLW) which is also the inverse of the specific 
leaf area (SLA) used by physiologists. CBdmB typically varies from 0.002 up to 0.02 g.cmP

-2
P. 

• CBwB Leaf water content (g.cmP

-2
P). Several studies showed that the relative water content 

could be approximated to a value close to 80% for the green leaves, and to around 20% for 
the senescent leaves. This allows tying the water (CBwB) and the dry matter (CBdmB) contents 
together. 
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• CBsB Leaf brown pigment content (relative units). Green leaves will be considered as 
having both possible brown pigments. CBsB typically varies from 0 for green leaves, up to 3.5 
for the senescent dark brown leaves. 

(Bacour, Jacquemoud et al., 2002) and (Le Maire, 2002) have analysed the sensitivity of the 
radiometric response both at the leaf and canopy levels. They showed that the chlorophyll content, 
the dry matter and the structure index are the main drivers of the optical properties in the visible to 
near infrared spectral domain. 

3.2.2. Canopy radiative transfer models 
The use of pure 3D models such as DART (Gastellu-Etchegorry, Demarez et al., 1996) or DISORD 
(Myneni, Asrar et al., 1992) for simulating a very large range of situations appears very appealing. 
Even though, the use of detailed 3D models that mimics actual canopy architecture and combined 
with ray tracing (Govaerts and Verstraete, 1998), (España, Baret et al., 1999) or radiosity (Gerstl 
and Borel, 1992), (Borel, Gerstl et al., 1991), (Chelle, Andrieu et al., 1997), (Soler, F. et al., 2001) 
radiative transfer description and applied to a representative sample of biomes and conditions 
would be ideal. However, it might be difficult to implement for two practical reasons: 

• The necessity to describe a very large range of realistic canopy architectures. This requires 
a huge effort in canopy architecture and optical properties measurements at the ground 
level. 

• The computer time required to run these models is generally important, and would therefore 
strongly limit the number of possible cases to be simulated. 

We thus propose to use a reflectance model that is computer efficient and exploits a small number 
of input variables. The SAIL radiative transfer model (Verhoef, 1984; Verhoef, 1985) is widespread 
in the remote sensing community for the estimation of vegetation biophysical variables. The 
canopy is described as an homogeneous medium where leaves are randomly distributed. The 
SAIL model uses a limited number of structural variables in addition to leaf reflectance and 
transmittance and soil back ground reflectance.  

• Leaf area index (LAI),  

• the average leaf angle (ALA), characterizing the leaf angle distribution that will be 
described by an ellipsoidal distribution (Campbell, 1986). Note that a spherical distribution 
corresponds to an average angle close to 57°, 

• the hot spot parameter (HOT) ((Kuusk, 1985)), 

To better account for the fact that MERIS is generally observing over heterogeneous areas 
because of its medium spatial resolution, mixed pixels made of pure vegetation and background 
fractions are considered. The vegetation cover fraction (vCover) variable is introduced to describe 
the fraction of ground covered by pure vegetation. A pixel is therefore considered to be composed 
of a fraction of bare soil (of the reflectance RBbB) and of a fraction vCover of vegetation (reflectance 
RBvegB) over a background of reflectance RBbB (Figure 3). The reflectance of the composite scene 
expresses as:  

RBTOCB = RBvegB × vCover + RBbB × (1-vCover)  Equation 1 
 

 
Figure 3: Compositing of the simulated scenes 
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3.2.3. Background reflectance model 
The background reflectance corresponds to all the non green materials that constitute the last 
bottom layer in the canopy. Following the definition of the LAI, fAPAR, fCover and LAIxCab 
variables, all the green vegetation layers have to be accounted in the computation of these 
variables. Therefore, the understory, if green (including lichens and moss), will not be considered 
as the background here. It will be included within the green vegetation layer. The background 
reflectance may thus correspond to soil or litter. Water and snow cases will not be considered 
here, since the corresponding pixels would be flagged as water bodies. Note that the reflectance 
mismatch criterion might also help discarding these cases.  

3.2.3.1. The background brightness concept 

The background reflectance, for a given wavelength, will depend on the background type (soil type, 
litter), geometrical illumination and view conditions ( Ω ), roughness (z) or moisture (H). The 
approach used here to describe the background reflectance properties is based on the brightness 
concept allowing confounding the effect of geometrical conditions, roughness and moisture within a 
single parameter that will be assumed independent from wavelength.  
The background reflectance ),,,( kjib zHΩλρ  for any wavelength λ, observation geometrical 

configuration iΩ , moisture HBjB and roughness zBkB is assumed proportional to the reflectance 

background for the same wavelength λ but different observation geometrical configuration lΩ , 
moisture HBmB and roughness zBnB: 

),,,(),,,( nmlbkji zHBszH
b

Ω⋅=Ω λρλρ  Equation 2 

where Bs is a brightness parameter that does not depend on wavelength λ, but depends on all the 
other factors (Ω, H, z). This convenient property is a consequence of the well known soil line 
concept (Baret, Jacquemoud et al., 1993) stating that a linear relationship exists between the 
reflectance of soils (and litter) in two wavelengths λB1B and λB2B when either the roughness, moisture 
or illumination or view directions vary: 

),(),,,(),(),,,( 212211 λλλρλλλρ bzHazH kjibkjib +Ω⋅=Ω  Equation 3 

This property could be written for an other set of sun and view directions:  

),(),,,(),(),,,( 212211 λλλρλλλρ bzHazH nmlbnmlb +Ω⋅=Ω  Equation 4 

Replacing in Equation 3 ),,,( 1 kjib zHΩλρ  and ),,,( 2 kjib zHΩλρ  by their expression derived from 
Equation 2: 

),(),,,(),(),,,( 212211 λλλρλλλρ bzHBsazHBs nmlbnmlb +Ω⋅⋅=Ω⋅  Equation 5 

Identifying Equation 5 to Equation 4 provides the condition under which Equation 2 is valid:  

),(),( 2121 λλλλ bbBs ≈⋅  Equation 6 

which is true either for 1≈Bs  or 0),( 21 ≈λλb . Experimental and theoretical results (Baret, 
Jacquemoud et al., 1993) show that the soil line intercept, ),( 21 λλb , is generally very small in 
comparison to the background reflectance value. For example, in the red and near infrared bands, 

1.0),(0 << nirredb λλ . Similarly, experimental evidences (Liu, 2003, results to be published), when 
referring to a standard situation (dry soil, medium roughness, no hot-spot configuration), 

3.13.0 <<Bs . Therefore, the brightness concept is generally valid and has already been used 
extensively in past studies (Weiss, Baret  et al., 2002); Bacour, Jacquemoud et al. 2002). 

The brightness concept allows describing the spectral variation of a given background when the 
geometrical configuration, moisture or roughness varies with two inputs: 

• The brightness parameter (Bs) that is independent on wavelength 
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• Reference reflectance spectra for any given other geometrical configuration, moisture and 
roughness. These reference spectra should represent the variability encountered over the 
Earth surface. 

3.2.3.2. Background spectral variation 

The reference soil spectra will be derived from a soil reflectance data base available at INRA 
Avignon representing a large variation of soil types, moisture, roughness and geometrical 
configurations (Jacquemoud, Baret et al., 1992; Liu, Baret et al., 2002b). Considering the 
brightness concept will allow increasing the diversity in actual soil properties. The measurements 
were performed using an ASD Fieldspec Pro spectrophotometer providing a 1nm spectral 
sampling close to the spectral resolution in the visible and near infrared domains. 460 soil 
reflectance spectra are available. 
To reduce the number of reference soil used while keeping the variability observed between soil 
properties, an iterative selection process was developed to evaluate the reconstruction 
performances of any soil reflectance spectra of the data base using a subset of N selected 
reference soil spectra. For each set of N reference soils investigated, 1<N<40, an automatic 
classification with N classes was made to identify the corresponding N reference spectra. This was 
achieved over the 460 reflectance spectra data base that were normalized so that each individual 
soil spectra has the same average reflectance value. This averaging process was applied in order 
to retain mainly reference soil spectra that differ by their spectral features rather by their 
brightness. The classification process will ensure that the N selected reference spectra are 
representing most of the variability in terms of spectral features. Then, for each of the (460-N) 
remaining soil spectra, a reference spectra among the N ones is selected, and the Bs coefficients 
adjusted to get the best match. This process is replicated over the N set of reference spectra to 
select the one that approximates the best the remaining soil considered with the adjusted Bs 
parameter. Finally, this is applied for all the remaining soils and then by investigating the cases for 
N varying from 1 to 40.  

 
Figure 4. Distribution of the residuals when reconstructing all the soils (460 spectra) with a subset 
of N (1<N<40) reference soils and a brightness coefficient. The box contains 50% of the cases, the 
whiskers 99%. The red ‘plus’ are outliers.  
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Results (Figure 4) show that the accuracy of the reconstruction as measured by the residuals 
decreases continuously with the number of reference spectra used as expected. We then selected 
5 reference soils for our simulations. This number provides a reasonable compromise between a 
small number of soils required for the simulations, and a reasonable accuracy in the representation 
of the variability of the soil reflectance spectra as illustrated by the 460 soils available in our data 
base. Figure 5 shows the 5 soil reflectance spectra finally selected.  

 
Figure 5. The 5 standard soil reflectance spectra in MERIS wavebands, as measured by (Liu, 
Baret et al., 2002a). Note that here the soils where normalized to the average soil reflectance 
values. 
 
Litter and vegetation residues. The litter corresponds to an important background, particularly 
over forest areas. The spectral signature of litter is very close to that of the soil as noticed by 
several studies (Asner, Wessman et al., 1998). Crop residues and natural vegetation residues may 
have also important contribution to the reflected signal during specific seasons. Similarly to litter, 
the reflectance of vegetation residues is also very similar to that of soil background (Gausman, 
Gerbermann et al., 1975), (Biard and Baret, 1997), (Chen and McKyes, 1993). Because of the 
similarity between litter, residues and soil reflectance, these will finally be aggregated within the 
‘soil’ background category.  

3.2.4. Atmosphere model 
Among the several atmosphere irradiative transfer models, the SMAC code (Rahman and Dedieu, 
1994) was selected for the good compromise it provides between the realism of the simulations, 
the relatively small number of inputs and the computation requirements. SMAC is actually a 
parametric version of the 6S code (Vermote, Tanré et al., 1997). The coefficients for the SMAC 
model have been adjusted specifically for the spectral characteristics of MERIS. The inputs of the 
SMAC model are the atmospheric pressure, the aerosol type (only continental and desertic 
aerosols are currently available), the aerosol optical thickness at 550nm (AOT), the ozone and 
water vapour contents and the sun and view directions. The coupling between the surface 
reflectance model and SMAC is achieved according to the following equation: 

 
Where ρTOA and ρTOC represent respectively the top of atmosphere and top of canopy reflectance, 
ρatmo is the contribution due to atmospheric scattering, Ts and Tv are the transmittance in the sun 
and view directions, and S is the spherical albedo of the atmosphere. The vector X represents the 
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vector of input variables of the SMAC model: the atmospheric pressure at the surface, the ozone 
and water vapour contents, the aerosol type (desertic or continental) and the AOT at 550 nm. The 
coupling scheme between the atmosphere and the surface was approximated by assuming a 
lambertian surface with a reflectance value equal to that of the bidirectional reflectance computed 
for the actual sun and view directions. This approximation is known to introduce only second order 
errors. 

3.3. Quality Assessment 
A brief list of quality assessment criterions was presented in §. 2.3. In this section, more details are 
provided except for the product uncertainties and reflectance mis-match that will be described 
along with the algorithm prototyping section §. 4.2. 

• Quality indicators. The same quality indicators to those presented as inputs will be 
replicated as outputs. 

• Out of range flag. In the case where the ANN provides biophysical variable estimates 
outside their definition range a flag will be triggered. The corresponding product value will 
be set to the closest bound of the range, i.e. either the minimum or the maximum accepted 
values. The product uncertainty value will be set to 999. 

• Product uncertainties The uncertainties associated to each biophysical variable are also 
coded with the same resolution as that used for the biophysical variables presented in 
Table 5. The way they will be derived will be presented in §. 4.3. 

• Spectra out of the training domain. When the L1B MERIS reflectance spectra appears to 
be out of the definition domain of the training data base, a flag is raised..  
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4. Algorithm prototyping 
The prototyping corresponds mainly to the calibration of the algorithm over the training data base. 
The requirements for generating the training data base are the following: 

• Having a representative sampling of all the vegetation types and conditions that can be 
observed over the Earth’s surface 

• Each case should be properly weighed by its frequency of occurrence to avoid putting too 
much emphasis on very scarce cases. 

• Using as much as possible prior information while letting enough flexibility so that the 
radiometric information is still worth! 

• The training data base should be large enough to get a reasonably well populated space of 
canopy realization. This should yield robust training results. 

4.1. Generation of the training database 
The training data base is generated in three steps: 

• Generation of the data base containing the input radiative transfer model variables 

• Generation of the corresponding top of atmosphere reflectance for the 13 MERIS bands 
considered 

• Addition of uncertainties to the simulated top of atmosphere reflectance values previously 
simulated.  

N, Cab, Cw, Cdm, Cs
LAI, ALA, Hot,

vCover

τ550, Patm,CH20, CO3

Leaf optical
properties

PROSPECT

Canopy
reflectance

SAIL

Atmosphere
Radiative transfer

SMAC

ρ(λ)
τ(λ)

Geometry
θo, θs, φ

Background
reflectance
Data base

Rs(λ)

Soil type, Bs

RTOC(λ)

RTOA(λ)

fAPAR
fCover

 
Figure 6: The coupled PROSPECT+SAIL+SMAC models used to generate the training database 
made of TOA reflectances and corresponding biophysical variables. 

4.1.1. Radiative transfer model 
The top of atmosphere reflectances of the training database is made of are simulated with the 
PROSPECT+SAIL+SMAC model described earlier Figure 6. The coupled model allows as well 
deriving the secondary biophysical variables fCover and fAPAR (from the computation of the 
absorptance by green elements). The inputs of the model are: 



 
MERIS ATBD TOA_VEG_V3                                                                                                        March 2006 

24

• the geometrical configuration of illumination and observation (i.e. the solar and view zenith 
angles, θBsB and θBvB, and the relative azimuth), that derives from  MERIS orbit mechanics and 
swath, for a given date and location, 

• the background reflectance spectrum, as described earlier, 

• the primary biophysical variables related to leaf optical properties (N, CBabB, Cw, CBmB, and CBbpB) 
and to the canopy structure (LAI, ALA, HOT, and Bs), 

• The atmosphere characteristics (Patm, τ550, CH2O, CO3). 

4.1.2. Generation of the vegetation input variables database 
This is the most delicate step in the generation of the training data base. As a matter of fact, the 
training data base has to reflect the actual distribution of the vegetation types over the Earth’s 
surface. The distribution of the variables will be constrained by the knowledge of date and location 
of the observation. The distribution of date and location will be described in the following section. 
Table 5 presents the range of variation and the actual distribution used for the input variables of 
the vegetation and background.  
 
The water content was tied to the dry matter content assuming that the green leaves have a 
relative water content close to 80%: CBwB=4.CBmB. Moreover, leaf water should have only marginal 
effect on TOC reflectance in the 13 MERIS wavebands. The distribution of the vCover variable is 
set uniform. Leaf area index values are inferred from the ECOCLIMAP LAI climatology (Masson, 
Champeaux et al., 2003). 
The training data base has to be sufficiently large to allow a robust calibration of the network, and 
also get a sub-set of the data base for hyper-specialization and test. The optimal size of the 
training data base depends on the complexity of the problem to solve. Previous studies (Combal, 
Baret et al., 2002) have shown that for a medium complexity problem, a training table close to 
10 000 cases was satisfactory. In the current case that corresponds to a more complex algorithm. 
the size of the training data base should increase. 

Variable Min Max Mode Std Nb. Class Law 
Day of the year Year 2003  1 182 - - 1 uniform 
Latitude (°)  -60 60 - - 1 uniform 
Longitude (°)  0 360 - - 1 uniform 
Leaf-Area-Index (m²/m²) 0 6 -1 4 5 gauss 
Average Leaf inclination Angle (°)  30 85 60 20 3 gauss 
Hot-Spot parameter (HotS) 0.001 1 0.1 0.3 1 gauss 
Mixed Pixels (vCover) 0 1 1 0.3 3 gauss 
Chlorophyll Content (µg/cm²) 30 100 50 30 5 gauss 
Dry matter content (g/cm²) 0.002 0.02 0.0075 0.0075 2 gauss 
Relative water content 0.65 0.9 0.8 0.05 2 gauss 
Brown Pigment index 0 1.5 0.1 0.3 3 gauss 
Mesophyll structure (N) 1 2.5 1.5 1 3 gauss 
Brightness Parameter (Bs) 0.5 2.5 1 0.5 4 gauss 
Pressure (mg/cm²)  600 1080 918 200 1 gauss 
Aerosol optical thickness (g/cm²)  0 0.8 0.35 0.3 4 gauss 
Water vapour content  1 6.5 3.8254 1.5 1 gauss 
Ozone  0.2 0.5 0.35 0.1 1 gauss 

Table 6. Distribution of the input variables of the radiative transfer model used to generate the 
training data base. Truncated Gaussian distributions are used, characterized by the mode, the 
standard deviation (Std), and the lower (Min) and upper bounds (Max).  
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The sampling scheme is based on a full orthogonal experimental plan (Bacour, Jacquemoud et al., 
2002). This consists to identify classes of values for each variable. Then all the combinations of 
classes are sampled once. Finally the actual values of each variable are randomly drawn within the 
range of variation defined by the corresponding class, according to the distribution law specified for 
the variable considered. This process allows accounting for all the interactions, while having the 
range of variation for each variable densely and near randomly populated. The number of classes 
(equally spaced) for each variable is shown in Table 6. 

1. Geometrty. The geometry of observations is defined by the location (latitude and longitude) 
and day of the year. All these input variables were drawn randomaly from the whole range 
of possible variation. Note that only half of the year is considered, the geometry of 
observation for the other half being symmetrical. Note also that the maximum latitude is 
60°. Beyond these latitudes, there are actually very little vegetation and illumination 
conditions are generally poor. 

2. Canopy variables. The following distributions were used (Table 5 and Erreur ! Source du 
renvoi introuvable.): 

• LAI: The LAI values are randomly drawn from a truncated Gaussian distribution that 
enhances cases with low leaf area index. The ‘local’ LAI value corresponding to the 
vegetated fraction of the mixed pixel is computed as: LAIpure =LAIpixel/vCover. Cases with 
LAIpure > 8.0 are eliminated. 

• ALA, HOT and vCover: The average leaf inclination angle is assumed to follow a 
truncated Gaussian distribution. 

3. Leaf optical properties. Here also, very little knowledge is available on the actual leaf 
characteristics. Truncated Gaussian distributions were used for all these variables (Table 
6). 

4. Atmosphere characteristics. Because very little information is available on the co-
distribution of the variables, they were supposed independent and following the truncated 
Gaussian laws as described in Table 6  

129 600 sets of input variables were available (Table 6).  

4.1.3. Simulation of the top of atmosphere reflectance for the 13 MERIS bands 
The previously derived table of input variables is used to simulate the corresponding MERIS top of 
atmosphere reflectance in the 13 MERIS bands using the PROSPECT+SAIL+SMAC model. A 
relative uncertainty corresponding to a 3% Gaussian noise with no bias was added to account for 
the sensor overall radiometric performances. It corresponds roughly to MERIS performances as 
evaluated over vicarious calibration exercises. Note that the spectral calibration uncertainties will 
not be accounted for because they are small and applies on relatively smooth reflectance spectra. 
Additionally, the fAPAR for sun position at 10:00 solar time, fCover and LAI.Cab values were finally 
computed. 
 

The uncertainties attached to the radiative transfer model mainly derive from the representation of 
canopy architecture, leaf and soil background optical properties which is difficult to evaluate. A 
posterior estimation will be issued using the reflectance mis-match criterion as computed over 
actual MERIS data.  

4.1.4. Streamlining the training data base 
The training data base should represent realistic cases. Two tests were made to ensure the 
consistency of the reflectance simulations with actual observations: 

4.1.4.1. Reflectance mis-match. 

The reflectance mismatch expresses the difference between a given MERIS L1B reflectance 
spectra and the one the closest as simulated in the data base. For this purpose, a compilation of 
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actual MERIS L1B reflectance spectra was achieved from using a large set of contrasted images. 
Then each reflectance spectra in the training data base was compared to the closest one in the 
actual MERIS L1B data base. The RMSE value is computed, and if the RMSE value is larger than 
the mismatch threshold, the reflectance spectra in the data base is rejected. Figure 7 shows that 
most simulated reflectance spectra is very close to a reflectance spectra actually measured by 
MERIS. The mismatch threshold was set to 0.02, which leads to eliminate about 5% cases in the 
data base. 

 
Figure 7. Distribution of the reflectance mismatch values (RMSE between a reflectance spectra in 
the training data base and the closest one in the MERIS L1B actual reflectance database. 

4.1.4.2. LAI/fAPAR streamlining 

A relatively well defined LAI/fAPAR relationship is expected. However, the use of the vCover 
factor, although necessary because of the mixed nature of the medium resolution pixels introduces 
large scattering the LAI/fAPAR relationship generally not observed. This also induces difficulties in 
the learning of the algorithm for the higher LAI values. For this reason, data showing too much 
scatter will be discarded. In our case, after several trials, we decided to discard all the data for 
which the fAPAR value was below a threshold value that depends on the LAI value (Figure 8). This 
resulted in the elimination of 24% additional cases.  

 
Figure 8. Relationship between LAI and fAPAR. The green dots correspond to the MODIS 
simulated values according to the ATBD (Knyazikhin, Glassy et al., 1999). The black lines 
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correspond to the median (solid line) and 50% and 98% of the data. The red line corresponds to 
the threshold value below which the data are eliminated. 

This streamlined data set was finally split in three parts with a random selection process: 

• Training: ½ of the simulations are affected randomly to the training of the neural network 

• Hyper-specialization: ¼ of the simulations are used for the hyper-specialization control 

• Testing: ¼ are used for the theoretical evaluation of the algorithm 

4.1.5. Realism of the simulated reflectances. 
Apart from the reflectance mismatch that was showing that the reflectance simulations were 
individually well matching actual MERIS observations, inspection of the distribution laws of the 
reflectance in each band will also provide confidence on the simulated values. Figure 9 shows that 
the range of variation as well as the distribution of the simulated reflectance are roughly in 
agreement with those observed over actual MERIS observations. 

 

 
Figure 9. Distribution of the reflectance values as simulated from the training data base (blue) and 
from the actual MERIS images (red). 
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4.2. Training the neural network 
Neural networks are defined mainly by the type of neurons used (the transfer function), the way 
they are organized and connected (the network architecture) and the learning rule. In addition, the 
input and output values need to be properly normalized to prevent any scaling factor or numerical 
problem. Back-propagation artificial neural network (Rummelhart, Hinton et al., 1986) is one of the 
most common neural networks used to solve our radiative transfer model inversion problem. 

4.2.1. Normalization of the input and output values 
The input (MERIS TOA reflectance in 13 bands and geometry) and output (the biophysical variable 
considered) values are first standardized according to Equation 10 so that 80% of the values fall 
within [-1;1]. Such data transformation is performed mainly to increase the performances of 
convergence of the training algorithm. 

)min()max(
)min(.*

xx
xxx

−
−

= 2   Equation 7 

4.2.2. Network architecture 
The connections between neurons are associated to a ‘‘synaptic’’ weight. Each neuron transforms 
the sum of the weighted signal from the previous neurons according to a given transfer function 
and a bias. The combination of sigmoid and linear functions is recognized as capable of fitting any 
type of function (Demuth and Beale, 1998). 
  
For our more complex problem, an optimal architecture had to be determined for each biophysical 
variable. Several network structures have been tested. For each possible structure, three neural 
networks, differing by the initialization of their coefficients, have been trained. The selection of the 
"optimal" network architecture is then based on the RMSE between the outputs and the "true" 
biophysical variables as well as on the number of coefficients to be adjusted. Lower numbers are 
preferred because they allow faster runs of the neural networks in operational mode while 
precluding hyper-specialization.  

The neural networks investigated that way are thus composed of: 
• one input layer made of the 16 normalized input data (θBsB, θBvB, cos(φ), and the TOC 

reflectances in the 13 MERIS wavebands). 
• two hidden layers with tangent sigmoid transfer functions.  
• one output layer with a linear transfer function. 

Results show that 2 hidden layers perform generally slightly better than just a single one. The 
optimal architecture of the networks did not vary much between variables as well as if one or two 
neurons are added or subtracted from the first or the second layers. The first layer has 10 
neurones, the second one between 5. This makes a total of 231 coefficients to tune, corresponding 
the ratio with the number of cases used in the training data base around 4000, which is much 
larger than the 100 value proposed by (Harrel, 2001). 

4.2.3. Learning process 
The learning process is mainly made of two elements: the training dataset that was described 
earlier and the learning rule that is now described. The Levenberg–Marquardt optimization 
algorithm is used to adjust the synaptic weights and neuron bias to get the best agreement 
between the output simulated by the network and the corresponding value of canopy biophysical 
variable simulated in the training data base. The initial values of the weights and biases were set to 
a random value between -1.0 and +1.0. To prevent from hyper-specialization, a sub-set of the 
training data base is used to control whether the network starts to hyper-specialize, i.e. represents 
the particular features of the training data set and therefore loosing its capacity to describe the 
general features targeted. When this starts to happen, the optimization process is stopped.  
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Five networks were trained in parallel to retrieve the canopy biophysical variables, each 
corresponding to independent random drawing of the initial values of the synaptic weights and 
bias. The network finally selected is the one providing the best performances over the test data set. 
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4.3. Theoretical performances of the artificial neural network  
The theoretical performances of the networks were evaluated over the test data set (Figure 10, 
Figure 11, Figure 12 and Figure 13) for the four biophysical variables considered. Results show 
that the ANN performances for fAPAR and fCover are better than those observed for LAI and 
LAI.CBabB: In the case of fAPAR and fCover, the maximum scattering is observed for the medium 
values of the variables as expected for these type of variables. On the contrary, a saturation effect 
is noticeable for the estimation of for LAI above 4 and LAI.CBabB above 300 µg.cm-2. The estimation 
is residuals show unbiased behavior for these two variables when compared with the estimated 
values, which is not the case when looking at the ‘true’ value.  
 
It is interesting to investigate the effect of the learning process on the relationship between LAI and 
fAPAR. Figure 14 Shows that the variability in LAI/fAPAR relationship is much reduced after the 
training process. It shows also that above LAI of 3, the ‘learned’ relationship depart significantly 
from that of the training data set. This is obviously due to the reduced sensitivity for the larger LAI 
values. 
 
To provide a first estimate of the theoretical uncertainties, the errors, approximated as the rmse 
value, was analyzed as a function of the product value. A second degree polynomial was adjusted 
to best describe the uncertainties as a function of the estimated variable value. Results (Figure 10, 
Figure 11, Figure 12 and Figure 13) confirm that the uncertainty varies only slightly with the 
variable value for fAPAR and fCover, with RMSE values around 0.06-0.08. However, for LAI and 
LAI.Cab, the uncertainties increase rapidly with the value of the variable, justifying the use of a 
relative uncertainty that is around 25-30%. This is mainly due to the physics of the radiative 
transfer, where the sensitivity of reflectance to LAI or LAI.Cab decreases when LAI or LAI.Cab 
increase. 

 
Figure 10: Theoretical performances for LAI estimation from the neural network. 
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Figure 11: Theoretical performances for fAPAR estimation from the neural network. 
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Figure 12: Theoretical performances for fCover estimation from the neural network. 
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Figure 13: Theoretical performances for LAI.Cab estimation from the neural network. 

 
Figure 14: Relationship between LAI and fAPAR. Left: training dataset; right: results after the 
learning process. 
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5. Conclusion 
This ATBD provides a description of the TOA_VEG algorithm used to compute fAPAR, fCover, LAI, 
and LAI.Cab products directly from MERIS top of atmosphere reflectance data both at full and 
reduced spatial resolution. Evaluation shows that the theoretical performances are slightly 
improved as compared to the classical approach based on the top of canopy reflectances as used 
as inputs to the network (see the corresponding ATBD (Baret, Bacour et al., 2005)). Therefore, 
because of possible errors in the atmospheric correction step necessary to get the TOC 
reflectances, the proposed TOA_VEG would have even better performances. 
 
The performances of this TOA_VEG algorithm were evaluated on an independently simulated data 
set. They show accurate estimates for fAPAR and fCover, independent from the value of the 
variable. However, LAI and LAI.Cab show less accurate estimates, particularly for the larger LAI or 
LAI.Cab values. This is obviously due to the physics of the radiative transfer, although 
improvements could be foreseen by adaptation of the training data base, with probably more cases 
with larger LAI values.  
This algorithm was validated using actual MERIS observations. The corresponding results are 
reported in a separate document (Baret, Weiss et al., 2006).  
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