# Report on the validation of MERIS IBAER land products

Aerosol Optical Thickness and surface reflectance

Attention to:

Peter REGNER, ESA/ESRIN Luc GOVAERTS, ESA/ESRIN

|               | Function         | Name                                                                  | Signature | Date |
|---------------|------------------|-----------------------------------------------------------------------|-----------|------|
| Prepared by   | Project Engineer | Véronique BRUNIQUEL<br>Béatrice BERTHELOT<br>W. Von<br>HoyningenHuene |           |      |
| Verified by   | Project Manager  | Béatrice BERTHELOT                                                    |           |      |
| Authorised by | General Manager  | Richard BRU                                                           |           |      |





Parc Technologique du Canal – 2, Avenue de l'Europe – 31520 Ramonville-Saint-Agne – France Tél. : +33 (0)562 88 11 11 – Fax : +33 (0)562 88 11 12 – E-mail : Noveltis@Noveltis.fr



## Indexing form

| Customer                                                           | ESA/ESRIN            |                  | Contract N°      |       | -                   |      |          |             |  |
|--------------------------------------------------------------------|----------------------|------------------|------------------|-------|---------------------|------|----------|-------------|--|
| Confidentiality codes                                              |                      |                  |                  |       | Document management |      |          |             |  |
| Company / Programme Defence                                        |                      |                  |                  |       |                     |      |          |             |  |
| Non-protected                                                      | d 🗌 Non-protected 🖂  |                  |                  |       | None 🗌              |      |          |             |  |
| Reserved                                                           | $\boxtimes$          | Limited diffus   | sion             |       | Internal            |      |          | $\boxtimes$ |  |
| Confidential                                                       |                      | Defence con      | fidentiality     |       | Customer            |      |          |             |  |
| Contractual                                                        | document             | Project N°       |                  |       | Work Pac            | kag  | е        |             |  |
| Yes                                                                | ⊠ No                 | 3341             |                  |       | WP100               |      |          |             |  |
| Report on the                                                      | validation of MER    | IS IBAER land    | products         |       |                     |      |          |             |  |
|                                                                    |                      |                  |                  |       |                     |      |          |             |  |
| Aerosol Optic                                                      | al Thickness and s   | surface reflecta | ince             |       |                     |      |          |             |  |
|                                                                    |                      |                  |                  |       |                     |      |          |             |  |
| Summary                                                            |                      |                  |                  |       |                     |      |          |             |  |
| This documer                                                       | nt contains the eler | nents of the va  | alidation of the | BAEF  | R processo          | r.   |          |             |  |
|                                                                    |                      |                  |                  |       |                     |      |          |             |  |
|                                                                    |                      |                  |                  |       |                     |      |          |             |  |
|                                                                    |                      |                  |                  |       |                     |      |          |             |  |
| Document                                                           |                      |                  |                  |       |                     |      |          | -           |  |
| File name                                                          | NOV-3341-N           | NT-3284_v1.5.    | doc              |       | Nbr of pag          | jes  |          | 141         |  |
| Project                                                            | MERIS exte           | nsion            |                  |       | Nbr of tables 7     |      |          | 7           |  |
| Software                                                           | Microsoft Of         | fice Word        |                  |       | Nbr of figures 3    |      |          | 38          |  |
| Language                                                           | English              |                  |                  |       | Nbr of appendices 5 |      |          |             |  |
| Document re                                                        | ference              |                  |                  |       |                     |      |          |             |  |
| Internal NOV-3341-NT-3284                                          |                      |                  |                  | Issue | 1                   | Date | 31/03/06 |             |  |
| External                                                           | -                    |                  |                  |       | Revision            | 1    | Date     | 07/04/06    |  |
| Author(s)                                                          |                      | Verified by      |                  |       | Authorised by       |      | •        |             |  |
| Véronique BRUNIQUEL<br>Béatrice BERTHELOT<br>W. Von HovningenHuene |                      | Béatrice BEF     | RTHELOT          |       | Richard BRU         |      |          |             |  |



| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 4                |      |          |  |  |  |  |

## Distribution list

| INTERNAL               | EXTERNAL                     |                        |  |  |
|------------------------|------------------------------|------------------------|--|--|
| Name                   | Name                         | Company / Organisation |  |  |
| Documentation Noveltis | Peter REGNER                 | ESA/ESRIN              |  |  |
| Richard BRU            | Wolfgang von HOYNINGEN-HUENE | Bremen University      |  |  |
| Béatrice BERTHELOT     |                              |                        |  |  |
| Véronique BRUNIQUEL    |                              |                        |  |  |
|                        |                              |                        |  |  |
|                        |                              |                        |  |  |



## Document status

| Report on the validation of MERIS IBAER land products |                                                   |          |                              |  |
|-------------------------------------------------------|---------------------------------------------------|----------|------------------------------|--|
|                                                       | Aerosol Optical Thickness and surface reflectance |          |                              |  |
| Issue Revision Date Reason for the revision           |                                                   |          |                              |  |
| 1                                                     | 1                                                 | 07/04/06 | Modification of the document |  |

|       | Modification status |          |             |                                       |                             |  |
|-------|---------------------|----------|-------------|---------------------------------------|-----------------------------|--|
| Issue | Rev                 | Status * | Modified    | pages                                 | Reason for the modification |  |
| 1     | 1                   | М        | all         | Additional information has been added |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
|       |                     |          |             |                                       |                             |  |
| *     | I = I               | Inserted | D = deleted | M = Modifie                           | ed                          |  |





| AAI       | Aerosol Absorbed Index                                                |
|-----------|-----------------------------------------------------------------------|
| AATSR     | Advanced Along Track Scanning radiometer                              |
| ACE       | Aerosol Characterisation experiment                                   |
| AERONET   | Aerosol Robotic Network                                               |
| AOT       | Aerosol Optical Thickness                                             |
| ASCAR     | Algorithm Survey and Critical Analysis Report                         |
| ATBD      | Algorithm Theoretical Basis Document                                  |
| ATSR-2    | Along Track Scanning radiometer                                       |
| AVHRR     | Advances Very High Resolution Radiometer                              |
| BAER      | Bremen AERosol algorithm for MERIS                                    |
| BEAM      | Basic Envisat AATSR MERIS toolbox                                     |
| DDV       | Dark Dense Vegetation                                                 |
| DWD       | Deutscher Wetterdienst                                                |
| ENVISAT   | ESA satellite                                                         |
| GOMETRAN  | GOME radiative TRANsfer model                                         |
| HDF       | Hierarchical Data Format                                              |
| IBAER     | Integrated BAER processor                                             |
| IGOS      | Integrated Global Observing Strategy                                  |
| IPCC      | Intergovernemental Panel Climate Change                               |
| KNMI      | Koninklijk Nederlands Meteorologisch Instituut                        |
| L1        | Level 1                                                               |
| L2        | Level 2                                                               |
| LACE      | Lindenberg Aerosol Characterisation experiment                        |
| LUT       | Look Up Table                                                         |
| MERCI     | Catalogue and Inventory for MERIS RR Data Products                    |
| MERIS     | Moderate Imaging Spectrometer                                         |
| MISR      | Multiangle Imaging Spectrometer                                       |
| MODIS     | Moderate Resolution Imaging SpectroRadiometer                         |
| NIR       | Near Infra Red                                                        |
| NDVI      | Normalised Difference Vegetation Index                                |
| POLDER    | Polarisation and Directionaly of the Earth's Reflectances             |
| RMSD      | Root Mean Square Deviation                                            |
| RTM       | Radiative Transfer Model                                              |
| SCIAMACHY | SCanning Imaging Absorption Spectrometer for Atmospheric CHartograpHY |
| SCIATRAN  | SCIAMACHY radiative TRANsfer model                                    |
| SDS       | Scientific Data Set                                                   |
| SeaWiFS   | Sea Viewing Wide Field of View Sensor                                 |
| SURF      | Surface                                                               |
| SW        | ShortWave                                                             |
| SW-VIS    | Short Wave -Visible                                                   |
| TOMS      | Total Ozone Mapping Spectrometer                                      |
| VIS       | Visible                                                               |



## **Reference** documents

- [RD1] BAER processor Input Output Data Document, NOVETIS technical note, NOV-3341-NT-3711 v.1.0
- [RD2] Algorithm for Remote Sensing of Tropospheric Aerosol From MODIS, Product ID: MOD04, Y. J. Kaufman and D. Tanré, version October 26, 1998
- [RD3] An ATBD for the ENVISAT radiometer MERIS; Determination of aerosol optical thickness over land surfaces, using Bremen Aerosol Retrieval (BAER) and its application to atmospheric correction over lands, W. Von Hoyningen-Huene, B. Berthelot, A. Kokhanovsky, J.P. Burrows, NOV-3341-NT-3352.pdf, April, 2006.
- [RD4] Santer et al., 2000,
- [RD5] Berthelot and Quesney, 2005. Assessment of the cloud mask in the frame of the GLOBCOVER project., NOV-3325-NT-3440.pdf
- [RD6] Annexe to the validation report, NOV-3341-NT-3229, B. Berthelot.



| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |
|-------|------------------|------|----------|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |
| Page  | 8                |      |          |  |  |  |



| FIGURE 1: VALIDATION SITE LOCATIONS                                                               | 16 |
|---------------------------------------------------------------------------------------------------|----|
| FIGURE 2: LEGEND OF THE ECOCLIMAP 2000 CLASSIFICATION                                             | 23 |
| FIGURE 3: AOT AT 443 NM (LEFT PLOT) AND ANGSTROM COEFFICIENT (RIGHT PLOT). FRANCE 14/07/2003      | 24 |
| FIGURE 4: EXAMPLE OF MOD04 GRANULE COVERAGE; RGB IMAGE ON THE LEFT; AOT AT 560 NM ON THE          |    |
| RIGHT                                                                                             | 25 |
| FIGURE 5: LOCATION OF THE AERONET STATIONS                                                        | 27 |
| FIGURE 6: AOTS AND ANGSTROM COEFFICIENT TEMPORAL VARIATION DURING ONE MONTH (LEFT PLOTS) AND      |    |
| OVER ONE DAY (RIGHT PLOT)                                                                         | 29 |
| FIGURE 7: COLOURED COMPOSITION OF MERIS LEVEL 2 DATA. RGB COLOUR (TOP IMAGE) AND                  |    |
| corresponding cloud mask. The blue colour flags the Level $2$ cloud mask. The red colour          |    |
| FLAGS THE CLOUD DETECTED BY IBAER                                                                 | 32 |
| FIGURE 8: ZOOM OF THE CLOUD MASK. THE BLUE COLOUR FLAGS THE LEVEL 2 CLOUD MASK. THE RED           |    |
| COLOUR FLAGS THE CLOUD DETECTED BY IBAER                                                          | 33 |
| FIGURE 9: COLOURED COMPOSITION OF MERIS LEVEL 2 DATA. RGB COLOUR (TOP IMAGE) AND                  |    |
| corresponding cloud mask. The blue colour flags the Level $2$ cloud mask. The red colour          |    |
| FLAGS THE CLOUD DETECTED BY IBAER                                                                 | 34 |
| FIGURE 10: CLOUD MASKS AT LEVEL 1 (TOP) AND LEVEL 2 (BOTTOM) COMPARISON ON MERIS IMAGE            |    |
| ACQUIRED IN JULY, 2003                                                                            | 35 |
| FIGURE 11: CLOUD DETECTED AT LEVEL 1 (ON THE LEFT) AND 2 (ON THE RIGHT). THE RED COLOUR INDICATES |    |
| THE CLOUDS DETECTED ON THE L1B DATA. THE GREEN COLOUR INDICATES THE CLOUDS DETECTED ON            |    |
| THE L2 DATA. THE CLEAR PINK COLOUR INDICATES THE CLOUDS DETECTED BY IBAER                         | 36 |
| FIGURE 12: LEVEL 2 CLOUD MASK 2 IN FULL RESOLUTION (TOP) AND REDUCED RESOLUTION (BOTTOM) ON       |    |
| MERIS IMAGE ACQUIRED IN JULY, 2003.                                                               | 37 |
| FIGURE 13: SPECTRAL AOT MAPS PROCESSED WITH BAER. THE MERIS SOURCE IMAGE CORRESPONDS TO           |    |
| AN ACQUISITION DONE ON 2003/06/20 AT 09:46:22                                                     | 41 |
| FIGURE 14: ALPHA EXPONENT PROCESSED WITH BAER THE MERIS SOURCE IMAGE CORRESPONDS TO AN            |    |
| ACQUISITION DONE ON 2003/06/20 AT 09:46:22                                                        | 41 |
| FIGURE 15: AREA COVERED BY THE VALIDATION. PIXELS IN RED ARE THE PIXELS WHERE THE BAER RETRIEVAL  |    |
| IS MADE. THESE PIXELS ARE OVERPLOTTED BY A BLUE COLOUR WHICH INDICATES THE LOCATION OF DDV        |    |
| PIXELS. THE NUMBER OF PIXELS ALLOWED FOR THE COMPARISON IS INDICATED IN THE TITLE                 | 42 |
| FIGURE 16: EXAMPLE OF THE RESULT COMPARISON (HERE AOT AT $412$ NM). THE RMSE, DETERMINATION       |    |
| COEFFICIENT AND REGRESSION COEFFICIENT ARE INDICATED IN THE IMAGE                                 | 42 |
| FIGURE 17: AOT IN CHANNEL 2 OVER DDV (LEFT IMAGE) AND USING BAER METHOD (RIGHT IMAGE)             | 43 |
| FIGURE 18: ANGSTROM COEFFICIENT OVER DDV (LEFT IMAGE) AND USING BAER METHOD (RIGHT IMAGE)         | 44 |
| FIGURE 19: MODIS AND BAER AOT AT 550 NM                                                           | 47 |
| FIGURE 20: AOT COMPARISONS AT 470, 550 AND 660                                                    | 48 |
| FIGURE 21: AOT COMPARISONS AT 470, 550 AND 660                                                    | 49 |
| FIGURE 22: AOT COMPARISONS AT 470, 550 AND 660                                                    | 50 |
| FIGURE 23: AOT COMPARISONS AT 470, 550 AND 660                                                    | 51 |
| FIGURE 24: AOT COMPARISONS AT 470, 550 AND 660                                                    | 52 |
| FIGURE 25: AOT COMPARISONS AT 470, 550 AND 660                                                    | 53 |
| FIGURE 26: AOT COMPARISONS AT 470, 550 AND 660                                                    | 54 |
| FIGURE 27: AOT COMPARISONS AT 470, 550 AND 660                                                    | 55 |
| FIGURE 28: AOT COMPARISONS AT 470, 550 AND 660                                                    | 56 |
| FIGURE 29: AOT COMPARISONS AT 470, 550 AND 660                                                    | 57 |
| FIGURE 30: BAER AOT AT 440° NM. THE VALUES OF THE SUNPHOTOMETER ARE WRITTEN IN THE IMAGE          | 62 |
| FIGURE 31: COMPARISONS BETWEEN AERONET AOT AT 440, 670 AND 870 NM AND BAER AOT AT 440,            |    |
| 665 AND 865 NM OVER SEVERAL VALIDATION SITES                                                      | 63 |
| FIGURE 32: SOIL AND VEGETATION REFERENCE SPECTRUM USED IN THE SENSITIVITY STUDY                   | 66 |
| FIGURE 33: SOIL REFERENCE SPECTRUM USED IN THE SENSITIVITY STUDY                                  | 67 |
| FIGURE 34: SCHEME OF THE RETRIEVAL PROCEDURE FOR THE AEROSOL OPTICAL THICKNESS OVER LAND. CASE    |    |

© Noveltis 2006



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 9                |      |          |  |

 $1,\,2,\,3$  impact on the green box. Case 4 impacts on the pink box. Case 5 impacts on the

| INITIALISATION PHASE, BLUE BOX    | 68 |
|-----------------------------------|----|
| FIGURE 35: RESULTS FOR CHANNEL 2  | 74 |
| FIGURE 36: RESULTS FOR CHANNEL 5  | 75 |
| FIGURE 37: RESULTS FOR CHANNEL 7  | 75 |
| FIGURE 38: RESULTS FOR CHANNEL 13 | 76 |





| TABLE 1. DEFINITION OF THE VALIDATION SITES AND NUMBER OF SELECTED MERIS IMAGES             | 17 |
|---------------------------------------------------------------------------------------------|----|
| TABLE 1. DEFINITION OF THE WALL AND MUCH AND ADDRESS OF OLDERED MERICES IMPROVES            | 06 |
| TABLE 2: EXTRACTED MOD04 AND MYD04 PARAMETERS                                               | 20 |
| TABLE 3 : NUMBER OF MODIS GRANULES SELECTED IN VIEW OF THE VALIDATION ACTIVITIES            | 26 |
| TABLE 4: NUMBER OF AVAILABLE AERONET MEASUREMENTS SELECTED IN VIEW OF VALIDATION ACTIVITIES | 30 |
| TABLE 5: COMBINATION OF REFERENCE SOIL SPECTRA USED IN THE SENSITIVITY STUDY                | 67 |
| TABLE 6: TABLE SHOWING HOW THE RESULTS ARE SUMMARISED.                                      | 73 |
| TABLE 7: RESULTS OF THE DIFFERENCE OF SURFACE REFLECTANCES SMAC – UBAC FOR THE MERIS        |    |
| DATASET                                                                                     | 76 |



## Table of contents

| 1. INTRODUCTION                                                     | 14      |
|---------------------------------------------------------------------|---------|
| 1.1. Scope of the document                                          | 14      |
| 1.2. Algorithm overview                                             | 14      |
| 1.3. Objectives of the validation                                   | 15      |
| 1.4. MERIS products used for the validation                         | 16      |
| 2. DATA USED FOR THE VALIDATION                                     | 24      |
| 2.1. Aerosol optical thickness data used for the validation         | 24      |
| 2.1.1. MERIS AOT over ddv                                           | 24      |
| 2.1.2. MODIS data                                                   | 25      |
| 2.1.2.1. MODIS product type                                         |         |
| 2.1.2.2. MOD04 coverage                                             | 25      |
| 2.1.2.3. MOD04 product format                                       | 25      |
| 2.1.2.4. MOD04 parameters                                           |         |
| 2.1.3. Selected MOD04 products                                      |         |
| 2.1.3.1. Ordering of the MODIS products                             |         |
| 2.1.3.2. Selected MOD04 products for the validation activities      |         |
| 2.1.4. AERONET measurements                                         |         |
| 2.1.4.1. Definition of the AERONET products                         |         |
| 2.1.4.2. AERONET product type                                       |         |
| 2.1.4.3. AERONET data file format and content                       |         |
| 2.1.4.4. AERONET parameters                                         |         |
| 2.1.4.5. Ordering of the AERONET measurements                       |         |
| 2.1.4.6. Selected AERONE1 data                                      |         |
| 3. CLOUD SCREENING ASSESSMENT                                       | 31      |
| 3.1. Introduction                                                   |         |
| 3.2. MERIS Cloud mask intercomparison                               |         |
| 3.2.1. Level 2 cloud mask and mask computed by Integrated BAER proc | essor31 |
| 3.2.2. Level 1b bright cloud mask and IBAER cloud mask              |         |
| 3.2.3. Impact of the spatial resolution on cloud detection          |         |
| 3.3. Conclusion                                                     |         |
| 3.3.1. Cloud mask comparison                                        |         |
| 3.3.2. Performances of the algorithm                                |         |
|                                                                     |         |
| 4. VALIDATION OF THE ATMOSPHERE PRODUCTS                            | 40      |
| 4.1. Introduction                                                   |         |
| 4.2. Assessment of the BAER output                                  | 40      |
| 4.3. Indirect validation                                            |         |
| 4.3.1. Comparison between BAER outputs and standard MERIS product   | is41    |
| 4.3.1.1. Introduction                                               |         |
| 4.3.1.2. Result synthesis                                           |         |
| 4.3.1.2.1 Comparison over the France-Spain area                     |         |

© Noveltis 2006



| 4.3.1.2.2 Validation over the 11 sites                                    | 44        |
|---------------------------------------------------------------------------|-----------|
| 4.3.1.2.2.1 Angstrom coefficient estimation                               | 44        |
| 4.3.1.2.2.2 Aerosol optical thickness estimation                          | 45        |
| 4.3.1.3. Conclusion                                                       | 45        |
| 4.3.2. Comparison between BAER outputs and MOD04 parameters               | 46        |
| 4.3.2.1. Validation methodology                                           | 46        |
| 4.3.2.2. Results for MERIS image over France                              | 46        |
| 4.3.2.3. Comparisons between BAER AOT and MOD04                           | 48<br>59  |
| 4.4. Direct validation                                                    | <b>30</b> |
| 4.4.1. Results for MERIS III age over Flance                              | 50        |
| 4.4.2. Compansion between DAER outputs and AERONET measurements           | 02<br>64  |
| 4.6. Sensitivity study                                                    | 64        |
| 4.6.1. Case1 : Impact of the scaling factor F                             | 65        |
| 4.6.2. Case 2 : NDVI weighting                                            | 65        |
| 4.6.3. Case 3 : Soil spectrum weighting                                   | 65        |
| 4.6.4. Case 4 : Impact of the AEROSOL type                                | 66        |
| 4.6.5. Case 5 (1 to 7) : Impact of reference vegetation and soil spectra  | 66        |
| 4.6.6. Position of the sensitive parameters in the modelling              | 67        |
| 4.6.7. Analysis                                                           | 68        |
| 4.6.7.1. Impact of reference soil and vegetation spectra on the AOT guess | 69        |
| 4.6.7.2. Impact of the NDVI weighting factor                              | 70        |
| 4.6.7.3. Impact on the soil reference spectrum weighting                  | 70        |
| 4.6.7.4. Impact of the scaling factor F                                   | 71        |
| 4.6.7.5. Impact of the uncertainty in the aerosol type knowledge          | 71        |
| 4.7. Conclusion                                                           | 71        |
| 4.8. Possible ways to improve the algorithm                               | 72        |
| 5. VALIDATION OF SURFACE REFLECTANCES                                     | 73        |
| 5.1. Introduction                                                         | 73        |
| 5.2. Results                                                              | 73        |
| 5.2.1. Presentation                                                       | 73        |
| 5.2.2. Summary of the differences for the other images                    | /0        |
| 5.3. Conclusion                                                           | /0        |
| 5.4. Possible ways to validate the surface reflectance results            | /0        |
|                                                                           | 79        |
| 7. ANNEX 1 : LIST OF THE SELECTED MERIS PRODUCTS                          | 80        |
| 8. ANNEXE 2 : OVERVIEW OF THE INPUT/OUPUT DATA OF THE IBAER               | 02        |
| RUCESSUR                                                                  | 0J<br>22  |
| 8.2. Products                                                             |           |
|                                                                           |           |
| J. ANNULAE J. LATENSIVE GLOUD DETECTION ASSESSMENT ON L2 MERIS<br>ΠΔΤΔ    | 85        |
|                                                                           |           |
| IV. ANNEAE 4: REJULIJ OF THE COMPARIJON BETWEEN BAER AUT AND A            | 02<br>1 U |
|                                                                           | ອວ        |



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Papart on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report of the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 13               |      |          |

| 10.1. Alta Foresta                                | 94  |
|---------------------------------------------------|-----|
| 10.2. BONDVILLE                                   | 95  |
| 10.3. BORDEAUX                                    | 97  |
| 10.4. GSFC                                        | 98  |
| 10.5. HOWLAND                                     | 99  |
| 10.6. ISPRA                                       | 99  |
| 10.7. LAMPEDUSA                                   | 101 |
| 10.8. LILLE                                       | 102 |
| 10.9. MARICOPA                                    | 103 |
| 10.10. MONGU                                      | 109 |
| 10.11. SKUKUZA                                    | 111 |
| 11. ANNEXE 5 : SURFACE REFLECTANCE MAP COMPARISON | 112 |



## 1. Introduction

### 1.1. Scope of the document

ESA's Medium Resolution Imaging Spectrometer (MERIS) on board Envisat has been continuously observing the Earth for the last four years. This instrument acquires multispectral imagery in 15 spectral bands from 0.4 to 0.9  $\mu$ m of the ocean, land and atmosphere. This spectral range and high spatial resolution with global coverage make MERIS a potentially valuable sensor for the measurement and the monitoring of the Earth.

This study focused on the "Development of algorithms for the exploitation of MERIS data over land" It aims at developing algorithms to characterise the aerosol content in the atmosphere, in order to complete the atmospheric correction scheme over land of the Level 2 MERIS data, and developing algorithm to retrieve the biophysical vegetation products, useful for environmental studies at global or regional scale.

This document is the validation report, reporting for the aerosol correction scheme developed in the frame of the MERIS data exploitation activities. The results are based on the exploitation of the BAER method (described in the ATBD [RD3]), which allow to estimate the aerosol optical thickness and perform the aerosol correction to provide land surface reflectances.

The algorithm has been developed to monitor the aerosol optical thickness (proportional to the aerosol total loading), over most of part of the continents. The aerosol information is used in a second step to perform atmospheric corrections, using either the SMAC processor or the UBAC processor, to derive the remotely sensed surface reflectance over the land. The processing is made on a pixel-by pixel basis

The report is presented in four main sections, the presentation of the data used for the validation (section 2), the cloud detection (section 3), the aerosol optical thickness retrieval (section 4), the surface reflectance estimation (section 5). Papers written during the project are referred in the ATBD.

### **1.2.** Algorithm overview

It has been shown that the retrieval of the aerosol content over land is a difficult task on a global scale since the surface albedo is generally unknown and variable with wavelength. Over the dark dense vegetation, some algorithms have been developed (Kaufman and Tanré, 1988; Holben et al. 1992) taking advantage of the low level of the reflectance in the blue and red regions to extend the derivation of aerosol optical thickness to additional brighter surfaces.

The BAER method (Bremen AErosol Retrieval) is an algorithm for remote sensing of aerosols from MERIS data over land. It is based on the same physical principles, i.e. the use of the MERIS blue bands (channel 1 and 2, 412nm, and 440 nm) to estimate the aerosol scattering and relate it to the aerosol content.

The actual MERIS Level 2 product provides reflectance data with an incomplete atmospheric correction over land. The atmospheric correction is made for Rayleigh scattering only and the variable aerosol influence is not considered. Thus, an additional step of atmospheric correction for L2 data over land is required, considering the effect of the atmospheric aerosol.



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Papart on the validation of MERIS IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 15               |      |          |

The original approach has been developed to retrieve AOT over land from SeaWiFS L1 data. It determines the spectral aerosol optical thickness (AOT) from nadir looking multi-wavelength radiometers. The method is based on the determination of the aerosol reflectance over 'dark surfaces', using the UV and short-wave-VIS range below the red-edge of the vegetation spectrum. This requires a proper separation of the variable surface effects, other atmospheric effects and aerosol effect.

For L2 data over land, the variability of the vegetation cover and the kind of the vegetation will be considered dynamically by means of a surface reflectance model tuned from the satellite scene self by the NDVI. The aerosol reflectance is obtained by removing the estimation of the surface effect. Look-up-tables of the relationship between AOT - aerosol reflectance and the use of constraints enable the determination of the AOT for 7 MERIS channels in a spectral range of  $0.412 - 0.670 \,\mu\text{m}$ . AOT is extrapolated, using Angström power law with parameters estimated from the retrieved AOT. Others terms of radiative transfer (aerosol reflectance, total transmittance and hemispheric reflectance) are computed once the AOT known to correct the Top Of Aerosol reflectance from aerosol effect.

Once the aerosol optical thickness estimated, it is used as input of the atmospheric correction method (either SMAC or UBAC) to perform the aerosol correction and to provide the surface reflectance in the 13 MERIS channels.

### **1.3. Objectives of the validation**

The objective of this study is to provide some validation elements of the aerosol optical thickness, angstrom exponent and surface reflectances products derived from the Integrated BAER algorithm (Von Hoynyngen-Huene et al;, 2005). The algorithm is fully described in the ATBD, referred by "Aerosol Optical Thickness and surface reflectance "in the document NOV-3341-NT-3352v1.0 [RD3].

The algorithm has been developed to be applied on MERIS L2 data to determine the aerosol optical thickness over land and complete the atmospheric correction by removing the aerosol signal from the Level 2 MERIS land products.

The full processing procedure is subdivided into 3 steps:

- 1. Cloud screening
- 2. Retrieval of aerosol optical thickness by the BAER approach
- 3. Atmospheric correction of aerosol effects in L2 reflectance data over land, using SMAC (Simplified Model of Atmospheric Correction, c.f. Dedieu *et al.*, 1994) or UBAC (University Bremen Atmospheric Correction, ATBD)

The validation of the products provides user the accuracy of the products derived from the Integrated BAER processor. A large number of MERIS L2 data has been processed in this exercise to cover a wide range of situations, i.e. the retrieval is performed over different surface types, various locations and dates. The accuracy is achieved by comparison to ground measured values (**direct validation** with AERONET measurements) and other equivalent products obtained from MERIS and MODIS sensors (**indirect validation** with MODIS Atmosphere products and MERIS standard outputs over DDV pixels).

This document presents the validation of each of the three modules.



### **1.4. MERIS** products used for the validation

The selected Level 2 MERIS data correspond to 11 areas well distributed around the world chosen for representing various cover types at different seasons. They have been taken from the MERCI database<sup>1</sup>. The geographic coordinates are noted in Table 1 and the sites are located in Figure 1. It is important to note that these sites have been also chosen because an AERONET station is present on each of these areas. Each MERIS product has been also displayed and selected manually to keep the products the clearest from the cloud point of view. The number of selected products is mentioned in Table 1. The full list of all selected MERIS products is available in Annex 1.

Due to the constraint of the MERIS data available in the MERCI database, the MERIS data selected for the validation correspond to the 2003 period.



#### Figure 1: Validation site locations

The MERIS sites also correspond to different site characteristics: for instance, conifer area near Bordeaux, tropical forest for Alta Foresta. A true colour image and the land classification map corresponding are provided in Table 1 for each site.

© Noveltis 2006

<sup>&</sup>lt;sup>1</sup> They have been selected among the available MERIS products of the MERCI database (<u>http://141.4.215.11/merci/welcome.do</u>).

This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis



| Site name | Latitude<br>(°)/<br>Longitude<br>(°) | Number<br>of<br>selected<br>MERIS<br>images | View of the site |
|-----------|--------------------------------------|---------------------------------------------|------------------|
| France    | [55-35,<br>-10,10]                   | 1                                           | <image/>         |

#### Table 1: Definition of the validation sites and number of selected MERIS images



| Site name    | Latitude<br>(°)/<br>Longitude<br>(°) | Number<br>of<br>selected<br>MERIS<br>images | View of the site |
|--------------|--------------------------------------|---------------------------------------------|------------------|
| Alta_Foresta | -9.916<br>-56.017                    | 4                                           |                  |
| Bondville    | 40.053<br>-88.372                    | 9                                           |                  |



| Site name | Latitude<br>(°)/<br>Longitude<br>(°) | Number<br>of<br>selected<br>MERIS<br>images | View of the site |
|-----------|--------------------------------------|---------------------------------------------|------------------|
| Bordeaux  | 44.788<br>-0.579                     | 5                                           |                  |
| GSFC      | 39.03<br>-76.88                      | 4                                           |                  |



| Site name | Latitude<br>(°)/<br>Longitude<br>(°) | Number<br>of<br>selected<br>MERIS<br>images | View of the site |
|-----------|--------------------------------------|---------------------------------------------|------------------|
| Howland   | 45.2<br>-68.733                      | 1                                           |                  |
| Ispra     | 45.803<br>8.626                      | 9                                           |                  |



| Site name | Latitude<br>(°)/<br>Longitude<br>(°) | Number<br>of<br>selected<br>MERIS<br>images | View of the site |
|-----------|--------------------------------------|---------------------------------------------|------------------|
| Lampedusa | 35.517<br>12.632                     | 3                                           |                  |
| Lille     | 50.612<br>3.142                      | 4                                           |                  |



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Papart on the validation of MEDIS IPAEP land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 22               |      |          |

| Site name | Latitude<br>(°)/<br>Longitude<br>(°) | Number<br>of<br>selected<br>MERIS<br>images | View of the site |
|-----------|--------------------------------------|---------------------------------------------|------------------|
|           |                                      |                                             |                  |
| Maricopa  | 33.069<br>-111.972                   | 29                                          |                  |
| Mongu     | -15.257<br>23.151                    | 6                                           |                  |



| Site name | Latitude<br>(°)/<br>Longitude<br>(°) | Number<br>of<br>selected<br>MERIS<br>images | View of the site |
|-----------|--------------------------------------|---------------------------------------------|------------------|
| Skukusa   | -24.99<br>31.587                     | 4                                           |                  |

|   | No data                                            |
|---|----------------------------------------------------|
|   | Artificial surfaces and associated areas           |
|   | Snow and Ice                                       |
|   | Water Bodies                                       |
|   | Bare Areas                                         |
|   | Mosaic: Cropland / Shrub and/or grass cover        |
|   | Mosaic: Cropland / Tree Cover / Other natural vege |
|   | Cultivated and managed areas                       |
|   | Regularly flooded shrub and/or herbaceous cover    |
|   | Sparse herbaceous or sparse shrub cover            |
|   | Herbaceous Cover, closed-open                      |
|   | Shrub Cover, closed-open, deciduous                |
|   | Shrub Cover, closed-open, evergreen                |
|   | Tree Cover, burnt                                  |
|   | Mosaic: Tree Cover / Other natural vegetation      |
|   | Tree Cover, regularly flooded, saline water        |
|   | Tree Cover, regularly flooded, fresh water         |
|   | Tree Cover, mixed leaf type                        |
|   | Tree Cover, needle-leaved, deciduous               |
|   | Tree Cover, needle-leaved, evergreen               |
|   | Tree Cover, broadleaved, deciduous, open           |
|   | Tree Cover, broadleaved, deciduous, closed         |
| _ | Tree Cover, broadleaved, evergreen                 |





## 2. Data used for the validation

### 2.1. Aerosol optical thickness data used for the validation

#### 2.1.1. MERIS AOT over ddv

The Aerosol optical thickness over land is a Level 2 product. In this study, It is called in this study "official aerosol product". The AOT is computed using the Santer et al. 2000 algorithm, described in [RD4]. The ddv pixels are identified using a threshold applied to a spectral index, the Atmospheric Resistant Vegetation Index (ARVI), threshold above which pixels are considered as ddv with known reflectance. Once the ddv surfaces have been identified, the aerosol properties are retrieved. An illustration of both aerosol optical thickness and angstrom coefficient is shown on the next figure.



Figure 3: AOT at 443 nm (left plot) and angstrom coefficient (right plot). France 14/07/2003.

© Noveltis 2006



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Popert on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 25               |      |          |

### 2.1.2. MODIS data

#### 2.1.2.1. MODIS product type

The **MOD04 and MYD04 daily level 2 products** correspond to MODIS Aerosol Products processed from data collected by the instruments respectively on the TERRA (10:30 UTC local overpass time) and the AQUA (13:30 UTC local overpass time) platforms. The characteristics of these two products are similar. These products provide AOT estimations at a daily frequency and at a spatial resolution of a 10x10 1-km (at nadir). The related ATBD corresponding to these products is [RD2].

#### 2.1.2.2. MOD04 coverage

Each MOD04 product (or granule) covers a five-minute time interval that implies a typical size of each product of 135 columns and 203 lines (except for every tenth granule that has 204 lines). An example of the AOT product is given in Figure 4.



Figure 4: Example of MOD04 Granule Coverage; RGB image on the left; AOT at 560 nm on the right

#### 2.1.2.3. MOD04 product format

The format of the MOD04 products is HDF. A code to read and extract the MOD04 parameters has been developed from HDF library subroutines and functions available on the official MODIS web site (http://modis.gsfc.nasa.gov/).



#### 2.1.2.4. MOD04 parameters

The MOD04 products contain 53 parameters stored as a SDS within the HDF file. Among all these parameters, the following ones summarised in Table 2, have been extracted in view of comparison with BAER-MERIS outputs:

| Parameter name                 | Description                                                | Valid Range                                                         |
|--------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|
| Longitude                      | Geodetic Longitude                                         | -180 to +180 degrees east                                           |
| Latitude                       | Geodetic Latitude                                          | - 90 to +90 degrees north                                           |
| Optical_Depth_Land_And Ocean   | AOT at 0.55 µm for both Ocean (best) and Land (corrected)  | 0 to 3                                                              |
| Aerosol_Type_Land              | Aerosol Type                                               | 0 to 3 with $0 = mixed$ ,<br>1 = dust, $2 = sulfate$ ,<br>3 = smoke |
| Continental_Optical_Depth_Land | Continental Optical Thickness at 0.47 and 0.66 µm          | 0 to 3                                                              |
| Corrected_Optical_Depth_Land   | Corrected Optical Thickness at 0.47, 0.55 and 0.66 $\mu$ m | 0 to 3                                                              |
| Angstrom_Exponent_Land         | Angstrom Exponent at 0.47 and 0.67 $\mu$ m                 | -0.5 to 3                                                           |
| Cloud_Fraction_Land            | Cloud Fraction (%)                                         | 0 to 100                                                            |

#### Table 2: Extracted MOD04 and MYD04 parameters

#### 2.1.3. Selected MOD04 products

#### 2.1.3.1. Ordering of the MODIS products

All the required MOD04 and MYD04 data products have been ordered via the MODIS data ordering system available at <u>http://disc.gsfc.nasa.gov/daac-bin/MODIS/Data\_order.pl?PRINT=1</u>. The MOD04 products are available at no charge.

#### 2.1.3.2. Selected MOD04 products for the validation activities

All the MOD04 and MYD04 granules available for each site and for the day of acquisition of the selected MERIS images have been ordered. Table 3 presents the number of MOD04 and MYD04 products selected depending on the site of interest.

| Site name    | Number of selected<br>MERIS images | Number of MOD04<br>granules | Number of MYD04<br>granules |  |
|--------------|------------------------------------|-----------------------------|-----------------------------|--|
| France       | 1                                  | 2                           | 0                           |  |
| Alta_Foresta | 4                                  | 7                           | 4                           |  |
| Bondville    | 9                                  | 13                          | 15                          |  |

Table 3 : Number of MODIS granules selected in view of the validation activities

© Noveltis 2006



| Bordeaux  | 5  | 10 | 9  |
|-----------|----|----|----|
| GSFC      | 4  | 9  | 8  |
| Howland   | 1  | 1  | 1  |
| Ispra     | 9  | 18 | 14 |
| Lampedusa | 3  | 4  | 5  |
| Lille     | 4  | 5  | 8  |
| Maricopa  | 29 | 38 | 39 |
| Mongu     | 6  | 11 | 11 |
| Skukusa   | 4  | 6  | 5  |

#### 2.1.4. AERONET measurements

#### 2.1.4.1. Definition of the AERONET products

The AERONET program allows to assess aerosol optical properties and validate satellite retrievals via a ground-based remote sensing aerosol network of 355 sites (Figure 5) distributed all over the world.

The network hardware consists of automatic sun-sky scanning spectral radiometers (CIMEL Electronique 318A). Data provides globally distributed near real time observations of aerosol spectral optical thickness (AOT), aerosol size distributions, and precipitable water in diverse aerosol regimes.

Several AERONET products can be downloaded (raw data, AOT, Almucantar retrievals, daily or monthly averages...) at no charge on the dedicated web site <u>http://aeronet.gsfc.nasa.gov/</u>.







#### 2.1.4.2. AERONET product type

Three levels of data are available: level 1.0 (raw data), level 1.5 (cloud screened data) and level 2.0 (cloud screened data and quality-assured).

Here, only AERONET level 2.0 data have been used to lead the validation activities excepted for the Alta\_Foresta site for which only level 1.5 data was available.

#### 2.1.4.3. AERONET data file format and content

The AERONET measurements are organised in one file per station for the required temporal period of observation. The provided data file is in ASCII format.

The file structure consists in four header lines that contain for example the product level, the station location, the column field names, .... The following data lines correspond to one line per measurement.

An example of level 2.0 file is displayed hereafter:

Level 2.0. Quality Assured Data.The following data are pre and post field calibrated automatically cloud cleared and manually inspected.

Location=Ispra long=8.627 lat=45.803 elev=235 Nmeas=4 PI=Giuseppe\_Zibordi Email=giuseppe.zibordi@jrc.it

AOT Level 2.0 All Points UNITS can be found at http://aeronet.gsfc.nasa.gov/data\_menu.html

Date(dd-mm-yy) Time(hh:mm:ss) Julian\_Day AOT\_1020 AOT\_870 AOT\_670 AOT\_500 AOT\_440 AOT\_380 AOT\_340 AOT\_532 AOT\_535 AOT\_1640 Water(cm) %TripletVar\_1020 %TripletVar\_870 %TripletVar\_670 %TripletVar\_500 %TripletVar\_440 %TripletVar\_380 %TripletVar\_340 %TripletVar\_532 %TripletVar\_535 %TripletVar\_1640 %WaterError 440-870Angstrom 380-500Angstrom 440-675Angstrom 500-870Angstrom 340-440Angstrom 440-675Angstrom(Polar) Last\_Processing\_Date Solar\_Zenith\_Angle

01/01/2003 11:14:33 1.468438 0.038325 0.044806 0.073269 0.119589 0.141780 0.166634 0.189546 N/A N/A N/A 0.845367 0.456265 0.504388 0.642881 0.617031 0.599185 0.921647 0.620208 N/A N/A N/A N/A 1.697046 1.193891 1.561534 1.774134 1.121407 N/A 07/03/2003 68.852826

01/01/2003 11:29:34 1.478866 0.038223 0.043845 0.071269 0.115022 0.137066 0.160989 0.182626 N/A N/A N/A 0.845144 0.568005 0.506470 0.529941 0.274644 0.256582 0.451597 0.441289 N/A N/A N/A N/A 1.675067 1.209493 1.543050 1.742699 1.108846 N/A 07/03/2003 68.775057

01/01/2003 11:44:32 1.489259 0.052641 0.054112 0.075488 0.112628 0.130354 0.152941 0.173960 N/A N/A N/A 0.873528 1.410212 1.112757 0.706326 0.754266 0.860590 1.093634 1.156840 N/A N/A N/A N/A 1.302694 1.103076 1.289067 1.328175 1.114234 N/A 07/03/2003 68.865395

...

#### 2.1.4.4. AERONET parameters

The line 4 of the header of level 2.0 file lists all the AERONET measured parameters:

- Date of acquisition: Date, Time and Julian day
- Aerosol Optical Thickness at 1640, 1020, 870, 670, 535, 532, 500, 440, 380, 340 nm
- Angstrom coefficients
- Auxiliary data: Precipitation, Solar zenith angle

An example of the products is shown in the next figure.



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Penert on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 29               |      |          |



Figure 6: AOTs and angstrom coefficient temporal variation during one month (left plots) and over one day (right plot).

#### 2.1.4.5. Ordering of the AERONET measurements

The AERONET measurements can be downloaded using an easy web interface available at <u>http://aeronet.gsfc.nasa.gov/</u> and allowing the users to select data depending on several options: station, date, level of processing, type of data, average data, etc.

#### 2.1.4.6. Selected AERONET data

The downloaded AERONET data have been selected for each validation site and for the nearest date/hour of MERIS acquisition.

AERONET measurements are averaged if several acquisitions are available in an interval of -10.. + 10 mn around the MERIS acquisition.

No AERONET data is selected if no acquisition has been done in this same interval.

The number of available AERONET measurements corresponding to the MERIS images is presented in Table 4. We can note that no AERONET data has been done in Bordeaux and Howland in 2003.



#### Table 4: Number of available AERONET measurements selected in view of validation activities

| Site name    | Number of selected<br>MERIS images | Number of AERONET<br>measurements |
|--------------|------------------------------------|-----------------------------------|
| France       | 1                                  | 5                                 |
| Alta_Foresta | 4                                  | 3                                 |
| Bondville    | 9                                  | 6                                 |
| Bordeaux     | 5                                  | 0                                 |
| GSFC         | 4                                  | 4                                 |
| Howland      | 1                                  | 0                                 |
| Ispra        | 9                                  | 9                                 |
| Lampedusa    | 3                                  | 2                                 |
| Lille        | 4                                  | 3                                 |
| Maricopa     | 29                                 | 29                                |
| Mongu        | 6                                  | 6                                 |
| Skukusa      | 4                                  | 4                                 |



## 3. Cloud screening assessment

### 3.1. Introduction

The BAER algorithm proposed in this study applies to clear-sky observations, which are those that went through cloud screening procedures. In the framework of aerosol content estimation, the cloud screening is one of the most critical steps required to get reliable aerosol optical thickness estimation, and in a second step surface level products from satellite observations in the solar reflective spectral domain.

The preprocessing of the MERIS Level 2 data provides a cloud mask, integrated in the Level 2 flag. Since the quality of the Level 2 flag is poorly achieved, a new cloud mask based on single and constant threshold applied to the L2 reflectance in the visible channels, has been developed in the framework of the study, and integrated into the processor. The quality of the available cloud masks are assessed by comparing the cloud masks produced by three available methods:

- The official MERIS Level 2 cloud mask,
- The IBAER method ( which integrates the L2 cloud mask)
- The official MERIS Level 1 bright cloud mask when both L1b and L2 are available.

The performance analysis of the mask is assessed directly by visual comparison and reported in the next subsections.

### 3.2. MERIS Cloud mask intercomparison

#### 3.2.1. Level 2 cloud mask and mask computed by Integrated BAER processor

The IBAER mask is compared to the L2 cloud mask in the following images. A true colour image is displayed to locate the clouds and the same image is plotted with the IBAER cloud mask superimposed. Two colours are used. The blue colour corresponds to the Level 2 cloud mask. The red colour corresponds to the IBAER cloud mask improvement against the cloud mask level 2. The Image acquired by MERIS on July, 14, 2003 is used for the comparison. The assessment has been made for all the MERIS dataset, and is reported by the same representation in the annexe of the document.





Figure 7: Coloured composition of MERIS LEVEL 2 data. RGB colour (Top image) and corresponding cloud mask. The blue colour flags the Level 2 cloud mask. The red colour flags the cloud detected by IBAER



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Penert on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 33               |      |          |



Figure 8: Zoom of the cloud mask. The blue colour flags the Level 2 cloud mask. The red colour flags the cloud detected by IBAER



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Papert on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 34               |      |          |



Figure 9: Coloured composition of MERIS LEVEL 2 data. RGB colour (Top image) and corresponding cloud mask. The blue colour flags the Level 2 cloud mask. The red colour flags the cloud detected by IBAER



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
|                                                       | Issue | 1                | Date | 31/03/06 |
|                                                       | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 35               |      |          |

#### 3.2.2. Level 1b bright cloud mask and IBAER cloud mask

The L1b bright cloud flag and the Level 2 cloud flag at Reduced resolution are compared over the same area for July, 14, 2003 (Figure 10). The coloured composition at L1b is shown in the following image with the bright flag coloured in red. The coloured composition at L2 is shown in the following image with the cloud coloured in blue (Cloud flag at L2) and red (IBAER cloud flag). Three areas are zoomed from these images to allow the comparisons (Figure 11).



Figure 10: Cloud masks at Level 1 (top) and level 2 (bottom) comparison on MERIS image acquired in July, 2003.





Figure 11: Cloud detected at Level 1 (on the left) and 2 (on the right). The red colour indicates the clouds detected on the L1b data. The green colour indicates the clouds detected on the L2 data. The clear pink colour indicates the clouds detected by IBAER.


### 3.2.3. Impact of the spatial resolution on cloud detection

In order to assess the quality of the cloud detection with the spatial resolution, the IBAER cloud detection has been applied to an image acquired in the full and reduced spatial resolutions.



Figure 12: Level 2 Cloud mask 2 in full resolution (top) and reduced resolution (bottom) on MERIS image acquired in July, 2003.

© Noveltis 2006 This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis



# 3.3. Conclusion

### 3.3.1. Cloud mask comparison

- <u>Assessment of the cloud Level 2 mask</u>: This mask detects the dense and bright flags, but does not detect the small clouds, or the semi transparent clouds. There are still a lot of pixels contaminated by cloud. It can be seen on presented figures (Figure 7 to Figure 9), and annexe 2) that the pixels coloured in blue underestimate the area covered by the clouds. Moreover, cirrus clouds are not detected.
- <u>Assessment of the cloud Level 2 mask plus IBAER</u>: The addition of the IBAER cloud mask improves the cloud detection, but is not probably severe enough. This is well illustrated on the previous figure (Figure 7 to Figure 9), where the IBAER contributes to extend the cloud detection.
- <u>Assessment of the IBAER mask against the Level 1b bright flag:</u> Figure 10 and Figure 11 allow the comparison between IBAER cloud and the level 1 b cloud mask. We can see that the level 1b cloud mask is better than the IBAER cloud mask, even the cloud boarders are not detected. The comparison of the zoom shows that the green an pink colours which correspond to the IBAER cloud mask are inside the area covered by the level 1 b cloud mask bright.
- Assessment of the contribution of the full spatial resolution against the reduced resolution in the cloud detection. Figure 12 presents the same area acquired in both resolutions, 300 m and 1.1 km. The improvement of IBAER method against Level 2 cloud mask is important, since the cloud boarders are better detected. At higher resolution, thin clouds and partially cloudy pixels are more sensitive to the underlying spectral properties of the surface. These pixels are detected as clouds by IBAER, whereas they are not seen by the Level 2 cloud mask.

### 3.3.2. Performances of the algorithm

The IBAER cloud mask is an additional step that is required due to the limitations in the official cloud detection algorithm. It improves the identification of the cloud mask provided in the Level 2 MERIS data, and make more confident the processing of remaining pixels in case of cloud free conditions. However, this method has not been fully validated over bright surfaces, such as desert or snow or ice.

### 3.3.3. Possible improvements

The IBAER cloud detection method is based on a simple threshold method, using three channels in the visible part of the solar spectrum. However, advanced methods, based also on threshold methods and developed for MERIS level 1b data have demonstrated their capacities to improve the cloud detection, allowing the detection of dense and bright clouds, but also cirrus and snow (Berthelot and Quesney, 2005, [RD5]). The methods have been assessed over a large dataset. Their advantages result in the high speed of execution, and the facility to set up the method, that is important for an integration into the BEAM toolbox.

Based on these results, the same approach could be done to improve the cloud detection on level 2 MERIS data, and integrate it into the BEAM toolbox.



Some additional information could be provided with the cloud channel.

- The cloud shadows could be removed from the processing.
- The cloud mask could be extended to at least 2 pixels in order to remove the environment effects due to the clouds.



# 4. Validation of the Atmosphere products

# 4.1. Introduction

The aerosol retrieval over land using MERIS data is a difficult task, which need to be done by checking its consistency and compare it to available aerosol optical thickness, retrieved using satellite data or ground measurements.

This section presents the methodology used to lead the validation activities and the results obtained in the frame of three inter-comparisons:

- between BAER outputs and the standard MERIS products, particularly over DDV pixels
- between BAER outputs and the MOD04 parameters
- between BAER outputs and the AERONET measurements

The retrieval of the AOT has been performed on the full dataset of MERIS images (see annexe 1). The results are provided in the next sub sections, summarised on tables site by site and for all dates.

# 4.2. Assessment of the BAER output

This first assessment is made in order to check the consistency of the BAER product, in terms of spatial coherence, range of both AOT and angstrom coefficient values. Figure 13 and Figure 14 present spectral AOT and Alpha exponent maps calculated by the IBAER processor over the Ispra site. Ispra site is covered by cultivated and managed area, and tree cover and natural vegetation.

The official outputs of the BAER processor defined in the IODD [RD 1] are the AOTs at 412, 440 and 550 nm and the Alpha exponent. The other spectral AOT maps hereafter shown have been derived using the classical Angstrom power law and the Alpha exponent.

We can note that:

- The spatial variations of the AOT are coherent without abrupt variations from one pixel to its neighbour.
- Large Alpha values (> 2.0) are obtained for flagged pixels. The Alpha values obtained over the North if Italy are high whereas they seem to be low (~ 0.5) in the south.



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 41               |      |          |  |



<u>AOT@412</u>



Figure 13: Spectral AOT maps processed with BAER. The MERIS source image corresponds to an acquisition done on 2003/06/20 at 09:46:22



AOT@550





# 4.3. Indirect validation

### 4.3.1. Comparison between BAER outputs and standard MERIS products

#### 4.3.1.1. Introduction

The BAER algorithm has been applied on the MERIS L2 dataset presented previously. The outputs (required for the validation) are the AOT at 412, 565, 865 nm, the angstrom coefficient, and a flag indicating the quality of the retrieval.



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 42               |      |          |  |

The selection of the pixels is made using the DDV flags present in the L2 products. For each pixel identified as a dark target, the values between BAER and DDV are compared. Comparison is made for different channels over land for spectral AOT at 412, 560, 865, and the angstrom coefficient.

The totality of the results is given in another report (NOV-3341-NT-3292.doc, [RD6]). The statistics are provided within the figures, like the spatial area covered by the validation. An example is given hereafter for the Lille image.

Figure 15 displays the area where both the AOT have been computed using the BAER method and DDV. The pixels for which the retrieval has been achieved are coloured in red. The pixels for which the AOT over DDV has been estimated are plot in blue colour in the same figure.

The figure allows to see the large surface area cover by the BAER retrieval against the area covered by the retrieval over DDV.

The scatterplots between BAER variables and DDV variables are also plot in this document. An example is seen in Figure 16.



Figure 15: Area covered by the validation. Pixels in red are the pixels where the BAER retrieval is made. These pixels are overplotted by a blue colour which indicates the location of ddv pixels. The number of pixels allowed for the comparison is indicated in the title.



Figure 16: Example of the result comparison (here aot at 412nm). The rmse, determination coefficient and regression coefficient are indicated in the image.

© Noveltis 2006 This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis



#### 4.3.1.2. Result synthesis

The statistical analysis has been made for the whole dataset (50 images) at the specified wavelengths. A table is drawn below indicating site by site, and image by image, the values of the linear regression (offset and slope), the mean, rmse,  $r^2$ , and standard deviation. The tables are provided with the annexe 4, and summarised hereafter.

### 4.3.1.2.1 <u>Comparison over the France-Spain area</u>

The AOT estimated in the blue channel (443 nm) for BAER and DDV target is displayed in Figure 17 to illustrate the coverage of the AOT retrieval with BAER approach against the DDV.

The AOT is estimated over largest areas than with the DDV method. The spatial continuity is good and consistent with the AOT estimated over DDV. The range of values is the same in both images, except on the cloud boarders but the problem will be solved by extending the cloud mask, or by applying another cloud mask. The AOT varies between 0 and 0.6. The AOT over cities is high around 0.4 and 0.5.



Figure 17: AOT in channel 2 over DDV (left image) and using BAER method (right image)

© Noveltis 2006 This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 44               |      |          |  |

The angstrom coefficient is represented for both retrievals in the next figure. The results are different, heterogeneous in each image. The angstrom coefficient is however higher in the DDV scene than in the BAER scene.



Figure 18: angstrom coefficient over DDV (left image) and using BAER method (right image)

#### 4.3.1.2.2 <u>Validation over the 11 sites</u>

#### 4.3.1.2.2.1 Angstrom coefficient estimation

The analysis of the spatial consistency between the two products shows that the angstrom coefficient is very variable, from one pixel to its neighbour, so that the spatial consistency is difficult to assess. The angstrom coefficient estimated by BAER are generally lower than those of the DDV, The mean is less than 1 for almost all the images, for both products except for the MONGU site where the angstrom coefficient varies between 1.3 and 1.5 for the DDV pixels. The

© Noveltis 2006

This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 45               |      |          |  |

standard deviation for both estimations is high, varying 0.2 and 0.5. In addition, no correlation is found between both angstrom coefficients.

### 4.3.1.2.2.2 Aerosol optical thickness estimation

The comparison of AOT estimation at 412 nm provided very good results. The coefficient of determination  $(r^2)$  is high, greater than 90 % for most of sites except for the sites where the number of DDV pixel is low (this is the case for instance of the GFSC site and the Maricopa site). The mean of the BAER AOT are slightly superior as those obtained for the ddv target. The range of the mean values varies between 0.1 and 0.5 which is a high value, with a standard deviation varying between 0.1 and 0.2. The rmse is good for Alta\_foresta, Bondville, Lille (less than 0.07), is acceptable for most of site (around 0.1) and not good for Mongu and Maricopa sites where it is greater than 0.2. These sites are located over bright surfaces, and we know the AOT retrieval over these types of surfaces is difficult. The number of pixels used for the regression is less than  $1000^2$ , whereas it is varies between 20000 and 100000 for the other sites.

The accuracy of the estimation at 560 nm is good for most of sites (except the two bright sites). The rmse is less than 0.05. The correlation is around 80%.

This result is important because the AOT at 550 nm is the variable that is used in input of the most of atmospheric correction method or radiative transfer model. This is the case of the SMAC method which has been integrated into the IBAER processor.

#### 4.3.1.3. Conclusion

To sum up the results, the comparison of both products (BAER and DDV) provides good results over most studied images. Although BAER tends to overestimate the results obtained over DDV, the results at 412 nm are good. The determination coefficient is greater than 80 %, whatever the location of the site. At 560 nm, the correlation varies from 60% to 80%, except for images where the clouds are not well filtered, and over bright surfaces. The correlation decreases with the increase of the wavelength. The results at 865 nm are not less good than at 412 nm. But the knowledge of the AOT at this wavelength is less important because this variable is not used into the correction of atmospheric effects.

An offset appears for low aerosol optical thickness (whatever the spectral band is). This offset varies between 0.05 and 0.1, depending on the number of pixels processed in the regression.

No correlation is found when comparing the angstrom coefficient.

<sup>&</sup>lt;sup>2</sup> The size of the image is 600x1121



### 4.3.2. Comparison between BAER outputs and MOD04 parameters

Mainly, this validation consists in comparing the estimated BAER AOTs with the AOTs derived from the MODIS data.

#### 4.3.2.1. Validation methodology

The BAER outputs and the MOD04 parameters are not directly comparable, because of different instrument channels of MERIS and MODIS over land:

- 1. the official BAER outputs defined in RD1 are the AOT at 412 and 560 nm and the MOD04 AOT are defined at 470, 550 and 660 nm. Consequently, the BAER AOT needs to be interpolated in the MODIS bands in order to be comparable;
- 2. The BAER products and the MOD04 products have not the same spatial resolution and their product grid also differs. Consequently, the 1 x 1 km BAER outputs needs to be averaged in order to be comparable to the MOD04 spatial resolution and they need also to be mapped in the MOD04 product grid.

In answer to item 1, new temporary BAER AOTs are estimated at 470, 550 and 660 in order to lead the validation. These estimations are done following the classical Angstrom power law with 412 nm as reference band:

$$\tau_{470} = \tau_{412} * \left(\frac{470}{412}\right)^{\alpha_{412}}$$

The AOT at 550 and 660 nm are similarly obtained replacing 470 by 550 and then by 660. The  $\alpha_{412}$  coefficient is the Angstrom exponent estimated by the BAER processor at 412 nm.

Concerning item 2, a simple processing is applied on the BAER AOT maps in order to be comparable to the MOD04 AOT maps. If possible, "average BAER pixels" are calculated for each MOD04 pixel. The average consists in estimating the AOT mean of a BAER 5x5 window centred on the BAER pixel the nearest of the MOD04 pixel. The BAER pixels taken into account in the computation of the AOT mean have to be:

- LAND pixels
- With an AOT in a valid range from 0 to 2.
- With an Alpha Angstrom coefficient at 412 nm in a valid range from 0.0 to 1.5

### 4.3.2.2. Results for MERIS image over France

The AOT for the MODIS aerosol optical thickness and BAER optical thickness is represented in the next figure. The spatial resolution is not the same, 10 km for MODIS, 1 km for BAER, but these images allow to compare the spatial consistency of the products.



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 47               |      |          |  |



#### Figure 19: MODIS and BAER AOT at 550 nm

The spatial comparison of the AOT at 550 nm allow to see the good agreement between the two product. In MODIS data which cover sea and land, we can see that there is also large regions where the retrieval fails.



#### 4.3.2.3. Comparisons between BAER AOT and MOD04

Figure 20 to Figure 29 show the relationships between the MERIS AOT and the MODIS AOT at 470, 550 and 660 nm over the Bordeaux site.



| Noveltis |
|----------|

| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
|                                                       | Issue | 1                | Date | 31/03/06 |
|                                                       | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 49               |      |          |





Figure 21: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/07/11 10:26 MYD04 product – Date: 2003/07/11 12:15



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 50               |      |          |  |





Figure 22: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/07/11 10:26 MYD04 product – Date: 2003/07/11 12:20



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 51               |      |          |  |





Figure 23: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/07/11 10:26 MYD04 product – Date: 2003/07/11 13:55



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 52               |      |          |  |





Figure 24: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/08/02 10:34 MYD04 product – Date: 2003/08/02 11:40

| Noveltis |
|----------|

| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
|                                                       | Issue | 1                | Date | 31/03/06 |
|                                                       | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 53               |      |          |





Figure 25: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/08/02 10:34 MYD04 product – Date: 2003/08/02 13:20



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 54               |      |          |  |





Figure 26: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/08/25 10:12 MYD04 product – Date: 2003/08/25 13:25



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 55               |      |          |  |





Figure 27: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/09/15 10:52 MYD04 product – Date: 2003/09/15 12:05







Figure 28: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/09/15 10:52 MYD04 product – Date: 2003/09/15 13:45

| Noveltis |
|----------|

| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 57               |      |          |  |





Figure 29: AOT comparisons at 470, 550 and 660 Site Bordeaux MERIS image – Date: 2003/06/19 10:17 MOD04 product – Date: 2003/06/19 11:15

We can note that:

- a bias of about 0.2 is systematically observed for all the bands.
- the correlation coefficient (r) decreases with the wavelength; the band that is the best correlated is 470 nm.
- the plot scattering is usually very large.
- outstanding values of BAER are caused by different cloud screening methods and the averaged character of MODIS results.
- The AOT of the MODIS products start at 0 or has even negative values, which are unrealistic. Even under very clear conditions there is some aerosol, giving a minimum AOT of about 0.05 at 0.440 nm. This also caused an apparent bias in the comparisons.

© Noveltis 2006



## 4.4. Direct validation

The direct validation aims at comparing BAER output with the data of the sunphotometers of the AERONET network (Holben 1992).

### 4.4.1. Results for MERIS image over France

For this image, data of 9 AERONET stations are available. The daily variations of AOT and angstrom coefficient observed are represented for each site.





Report

| on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|------------------------------------------------|-------|------------------|------|----------|--|
|                                                | Issue | 1                | Date | 31/03/06 |  |
|                                                | Rev   | 1                | Date | 07/04/06 |  |
|                                                | Page  | 59               |      |          |  |



© Noveltis 2006 This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 60               |      |          |  |



© Noveltis 2006 This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis

|          | Ref                                                   | NOV   | -3341-N | T-3284 |          |
|----------|-------------------------------------------------------|-------|---------|--------|----------|
| ) Y      | Report on the validation of MERIS IBAER land products | Issue | 1       | Date   | 31/03/06 |
|          |                                                       | Rev   | 1       | Date   | 07/04/06 |
| Noveltis |                                                       | Page  | 61      |        |          |



At the time of the acquisition, the values of the AOT at are written on the image.

|          | Report on the validation of MERIS IBAER land products | Ref   | NOV | -3341-N1 | -3284    |  |
|----------|-------------------------------------------------------|-------|-----|----------|----------|--|
| `₩       |                                                       | Issue | 1   | Date     | 31/03/06 |  |
|          |                                                       | Rev   | 1   | Date     | 07/04/06 |  |
| Noveltis |                                                       | Page  | 62  |          |          |  |



Figure 30: BAER AOT at 440° nm. The values of the sunphotometer are written in the image.

The spatial consistency of the BAER output with the AERONET data is highlighted with this figure. Low and higher values are observed by both estimations.

### 4.4.2. Comparison between BAER outputs and AERONET measurements

Figure 31 presents the comparisons between AERONET AOTs at 440, 670 and 870 and BAER AOTs at respectively 440, 665 and 865 nm. The BAER AOT has been estimated on the pixel the nearest of the location of the AERONET station. Each plot colour corresponds to one validation site.

|          | Ref                                                   | NOV   | -3341-N1 | -3284 |          |
|----------|-------------------------------------------------------|-------|----------|-------|----------|
| `\       | Report on the validation of MERIS IBAER land products | Issue | 1        | Date  | 31/03/06 |
|          |                                                       | Rev   | 1        | Date  | 07/04/06 |
| Noveltis |                                                       | Page  | 63       |       |          |



|              | Report on the validation of MERIS IBAER land products | Ref   | NOV | -3341-N | Г-3284   |
|--------------|-------------------------------------------------------|-------|-----|---------|----------|
| ) ` <b>Y</b> |                                                       | Issue | 1   | Date    | 31/03/06 |
|              |                                                       | Rev   | 1   | Date    | 07/04/06 |
| Noveltis     |                                                       | Page  | 64  |         |          |



We can remark that:

- The best trend is obtained for the 440 nm band; no correlation is obtained at 870 nm.
- as in the frame of the comparison between BAER AOT and MODIS AOT, a small offset is observed at 440 nm
- the BAER AOT values are usually larger than AERONET AOT values

# 4.5. Analysis and Conclusions

The validation activities of the BAER outputs have been led by intercomparisons with two independent products MODIS products, AERONET measurements and one derived from MERIS available over DDV pixels. At this stage of the validation activities, we have noted:

- The good spatial consistency of the BAER AOT
- The best accuracy and correlation of the AOT retrieval are obtained in short wavelength 412, 440 and 550 nm.
- A small offset is observed at the shortest wavelength
- BAER AOT values are usually larger than measured MODIS, AERONET and DDV AOTs.

# 4.6. Sensitivity study

In order to assess the impact of different factors and parameters used in the modelling, a sensitivity study is made, aiming at testing several hypotheses, of which the choice of predefined static input parameters. Five cases are analysed to determine the weight of initial value. The equations in which these parameters are used are reprinted from the ATBD hereafter.



1. The equation allowing the separation of surface effects and atmosphere effects are written hereafter

$$\rho_{Surf,i=0}^{Mixing}(\lambda) = C_{Veg} \cdot \rho_{Veg}(\lambda) + SF \cdot (1 - C_{Veg}) \cdot \rho_{Soil}(\lambda) \qquad (eq.7 \text{ of the ATBD})$$

Where  $\rho_{veg}$  and  $\rho_{soil}$  are the reference spectra of vegetation and bare soil respectively

C<sub>veg</sub> is a linear function of NDVI

SF is a weight given to the bare soil spectra to increase the impact of bare soil.

The case 2, 3, 5 of the sensitivity study relate to the analysis of this factor

2. The equation allowing to adapt the level of the surface reflectance to that required with the scene

 $\rho_{Surf}(\lambda) = F \cdot \rho_{Surf,i=0}^{Mixing}(\lambda)$  (eq.8 of the ATBD)

The case 1 of the sensitivity study relates to the analysis of this factor.

3. The relationship between AOT and aerosol reflectance is given by :

 $\delta \text{AerGuess} = f(\rho_{\text{AOTguess}})$ 

(eq.20 of the ATBD)

The case 4 of the sensitivity study relates to the analysis of this factor.

## 4.6.1. Case1 : Impact of the scaling factor F

The surface reflectance model used for the separation of surface effects from atmospheric effects is adapted by two parameters to the conditions within the individual pixel: a linearly mixed spectrum of surface reflectance, and a scaling factor F to adapt the linearly mixed spectrum to the reflectance conditions.

The impact of this scaling factor F is assessed through a change of its value by a 20% factor.

In this case, F is set to a higher value F=1.2 instead 1.

### 4.6.2. Case 2 : NDVI weighting

In the reference case, the vegetation cover is estimated from the NDVI. The NDVI value is weighted by a 0.9 factor.

In the sensitivity case, no weight is applied.  $C_{scal}$  factor is set to 1.

### 4.6.3. Case 3 : Soil spectrum weighting

The linearly mixed spectrum of surface reflectance  $(\rho_{Surf,i=0}(\lambda))$  is given by a weighted mixing of spectra from 'green vegetation' and 'bare soil'. In the reference case, the soil reference surface reflectance is weighted by a 1.3 factor to increase its account.

In this case, the 1.3 factor is removed.



### 4.6.4. Case 4 : Impact of the AEROSOL type

The reference case is made for one type of aerosol. The Look Up Table has been precomputed for the results of the LACE 98 campaign, allowing the defined a Look Up Table linking the aerosol optical thickness at all wavelengths of MERIS channel, and the aerosol reflectance.

In this case, another LUT is used, based on continental aerosol type taken from OPAC continental aerosol database

### 4.6.5. Case 5 (1 to 7) : Impact of reference vegetation and soil spectra

In the case, the full impact of the reference spectra used both for vegetation and soil are assessed. The reference surface reflectance is estimated by a combination of vegetation spectrum and soil spectrum. These spectrums are represented in the following graphs. The LACE\_MAPLE and Casi 1 are used as reference, and depending on the brightness of the soil, the KARNIELI 1 is used (automatically) for desert cases.



Figure 32: Soil and vegetation reference spectrum used in the sensitivity study.

In the sensitivity study, we still used the same vegetation spectra, but test the impact of the soil spectra. Four new spectra are tested (Karnieli 2A to 2D), which corresponds to more or less bright bare soil. They are represented in the next figure.

The soil spectra used for the sensitivity study are artificial soil spectra, taken from Karnieli 2 spectra and increased by a 0.05 value to keep the same spectral variations (slope) but with an absolute level value higher.

The Karnieli 2A corresponds to Karnieli 2 spectrum with the offset increased by 0.05 (red line)

The Karnieli 2B corresponds to Karnieli 2 spectrum with the offset increased by 0.1 (green line)

The Karnieli 2C corresponds to Karnieli 2 spectrum with the offset increased by 0.15 (pink line)

The Karnieli 2D corresponds to first value of Karnieli 2 and last value of Karnieli 2C (black line)



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
|                                                       | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 67               |      |          |  |



Figure 33: Soil reference spectrum used in the sensitivity study.

The combinations of vegetation and bare soil spectra are given by Table 6.

| Reference of the test | Vegetation spectrum used | Soil spectrum used | Soil spectrum used when desert soil is detected |
|-----------------------|--------------------------|--------------------|-------------------------------------------------|
| Cas5_1                | LACE+MAPLE               | CASI_1             | KARNIELI2                                       |
| Cas5_2                | LACE+MAPLE               | KARNIELI           | KARNIELI2                                       |
| Cas5_3                | LACE+MAPLE               | KARNIELI2          | KARNIELI2                                       |
| Cas5_4                | LACE+MAPLE               | KARNIELI2A         | KARNIELI2                                       |
| Cas5_5                | LACE+MAPLE               | KARNIELI2B         | KARNIELI2                                       |
| Cas5_6                | LACE+MAPLE               | KARNIELI2C         | KARNIELI2                                       |
| Cas5_7                | LACE+MAPLE               | KARNIELI2D         | KARNIELI2                                       |

### 4.6.6. Position of the sensitive parameters in the modelling

The different factors which have an impact on different phases of the processing are indicated in Figure 34. They modify:

- The initialisation phase (determination of the first guess)
- The separation of surface and atmosphere contribution phase
- The parameter of radiative transfer

In order to provide synthetic results, the totality of the results (obtained for all the images and all dates) is reported in the annexe of this document.



|                                                       | Ref   | NOV | -3341-N7 | -3284    |
|-------------------------------------------------------|-------|-----|----------|----------|
| Papart on the validation of MERIS IRAER land products | Issue | 1   | Date     | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1   | Date     | 07/04/06 |
|                                                       | Page  | 68  |          |          |



Figure 34: Scheme of the retrieval procedure for the aerosol optical thickness over land. Case 1, 2, 3 impact on the green box. Case 4 impacts on the pink box. Case 5 impacts on the initialisation phase, blue box.

### 4.6.7. Analysis

The sensitivity studies allows to highlight the impact of different factors used in the modelling, and to hierarchy them, by order of importance.

The changes have been made at different levels of the processing to estimate

- the impact of the guess of the AOT and surface reflectance retrieval,
- the robustness of the retrieval if an uncertainty is introduced in the knowledge of the aerosol type,
- the strength of the iterative method if the initial tuning factors and weighting factors (F, NDVI and SF) are far from their optimal values,



#### 4.6.7.1. Impact of reference soil and vegetation spectra on the AOT guess

It has been seen in the ATBD that the heart of the BAER method results on the decoupling of the surface effects from the atmosphere effects. The assumptions made for the separation of the effects are based on the fact that the surface reflectance is a weighting function of both vegetation and bare soil reflectances, with a weight SF given to the bare soil reflectance reference to increase its contribution. Out to these factors, the weight given itself to the spectral variation of the reference spectra has been examined by the Cases 5 (1 to 7) of the sensitivity study. Seven combinations of mixed reference spectra have been tested on the AOT retrieval.

The case of the AltaForesta site is examined in details. For the reference case, the results obtained for the aot estimation at 560 nm (in comparison with the ddv):

| date | Nb    | Offset | Slope | $\mathbf{r}^2$ | rmse | Mean | Mean | Sdt  | Sdt |
|------|-------|--------|-------|----------------|------|------|------|------|-----|
|      | pixel |        |       |                |      | baer | ddv  | baer | ddv |

| Reference | 25072003 | 15388  | 0.1321 | 0.5404 | 0.7527 | 0.0831 | 0.2028 | 0.1309 | 0.0565 | 0.0908 |
|-----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Case5-1   |          |        |        |        |        |        |        |        |        |        |
|           | 30042003 | 160959 | 0.1166 | 0.7408 | 0.6619 | 0.0845 | 0.2123 | 0.1292 | 0.0537 | 0.0590 |

| Case5-2 | 25072003 | 13124  | 0.1105 | 0.6206 | 0.8047 | 0.0645 | 0.2013 | 0.1463 | 0.0616 | 0.0890 |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | 30042003 | 158658 | 0.1088 | 0.7501 | 0.6595 | 0.0777 | 0.2062 | 0.1299 | 0.0545 | 0.0590 |

The Karnieli1 soil spectrum used in this case has a level of reflectance higher than the CASI 1 reflectance spectrum. The rmse is little bit better, and the results are better correlated than in case 5-1.

| Case5-3 | 25072003 | 13125  | 0.1075 | 0.6316 | 0.8164 | 0.0629 | 0.1998 | 0.1462 | 0.0623 | 0.0891 |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | 30042003 | 158492 | 0.1073 | 0.7541 | 0.6668 | 0.0768 | 0.2053 | 0.1300 | 0.0545 | 0.0590 |

The Karnieli 2 soil spectrum has higher reflectance in the visible channel and lower reflectance in near Infra red channel than the CASI-1.Results are also improved.

| Case5-4 | 25072003 | 12508  | 0.0909 | 0.6911 | 0.8488 | 0.0521 | 0.1950 | 0.1507 | 0.0664 | 0.0885 |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | 30042003 | 155831 | 0.1018 | 0.7640 | 0.6654 | 0.0723 | 0.2016 | 0.1307 | 0.0552 | 0.0589 |

The Karniel2A soil spectrum has a reflectance level higher by a constant 0.05 factor. The correlation is also better than in the other cases, the offset of the relation has decreased, and the rmse is 0.01 lower.

| Case5-5 | 25072003 | 12521  | 0.0770 | 0.7427 | 0.8767 | 0.0448 | 0.1882 | 0.1497 | 0.0708 | 0.0892 |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | 30042003 | 153186 | 0.0971 | 0.7735 | 0.6614 | 0.0686 | 0.1988 | 0.1315 | 0.0560 | 0.0589 |

The Karniel2B soil spectrum has a reflectance level higher by a constant 0.1 factor. The correlation is improved, with the accuracy of the regression.

© Noveltis 2006

This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis



|                                                       | Ref   | NOV | -3341-NT | -3284    |
|-------------------------------------------------------|-------|-----|----------|----------|
| Penert on the validation of MEDIC IDAED land products | Issue | 1   | Date     | 31/03/06 |
| report on the validation of MERIS IBAER land products | Rev   | 1   | Date     | 07/04/06 |
|                                                       | Page  | 70  |          |          |

| Case5-6 | 25072003 | 12559  | 0.0671 | 0.7781 | 0.8957 | 0.0395 | 0.1829 | 0.1488 | 0.0738 | 0.0898 |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | 30042003 | 150777 | 0.0930 | 0.7818 | 0.6584 | 0.0655 | 0.1964 | 0.1322 | 0.0567 | 0.0588 |

The Karniel2C soil spectrum has a reflectance level higher by a constant 0.1 factor. The correlation is improved, with the accuracy of the regression. The offsets decrease too.

| Case5-7 | 25072003 | 13689  | 0.1123 | 0.6151 | 0.8105 | 0.0671 | 0.1998 | 0.1422 | 0.0612 | 0.0896 |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | 30042003 | 159351 | 0.1088 | 0.7560 | 0.6702 | 0.0784 | 0.2068 | 0.1297 | 0.0545 | 0.0590 |

The Karniel2D soil spectrum has a low reflectance level in the blue channel which increases linearly to a high level in the near infrared channel. The correlation and the accuracy of the results in this case decrease.

Moreover, depending on the reference spectra chosen, the number of pixels for which the retrieval is possible varies at the maximum of 18 % for the first date, 6% for the second which has 10 times more valid pixels.

The results details here are reproduced with the other sites. The use of case 5-5 and 6 (Karnieli 2B and Karnieli 2C) provides the best results whereas the use of the other reference soil spectra does not improve significantly the accuracy of the retrieval.

The results show that the impact of the soil reference spectra shape is important against the vegetation reference spectrum chosen. Indeed, to be able to simulate the linear mixed spectrum of surface reflectance, the two spectra have to cover a large variation of possible reflectance in both the short wave length and near infrared wavelength. The vegetation reference spectrum (LACE MAPLE) has very low values of reflectance (less than 5 %) in the visible channels. When the soil reference spectrum has also low value in the same spectral range, the Cveg factor which estimates the vegetation cover fails in the fitting of Eq 7 of the ATBD. This is the same effect in the near infra red part of the solar spectrum covered by MERIS channels. This is the reason why the KARNIELI 2C and 2D provide the best results.

As these Karnieli2A to D spectra have no reality, the spectra used to represent the vegetation and the soil are CAMELEO and Casi 2 (Nominal case, section 4.2.1). Their variations are around 0.1 in the visible MERIS channels and near infrared channels.

These two spectra are kept as nominal reference spectra for the data processing.

#### 4.6.7.2. Impact of the NDVI weighting factor

The linear mixing of the vegetation and ground surface spectral reflectance is tuned by the Vegetation Cover factor (Cveg), which is proportional to the NDVI. The proportionality factor  $C_{Scal}$  is equal to 0.9 NDVI. When the weighting factor is set to 1, no real differences are seen with the reference case.

#### 4.6.7.3. Impact on the soil reference spectrum weighting

In order to increase the bare soil effect in the estimation of the mixing reflectance, the bare soil spectrum is weighted by a 1.3 factor in the reference case. In this case, the weighting factor is removed (set to 1) and the case 3 of the sensitivity study allows to estimate its impact on the retrieval. As seen on the results, the SF factor change has no impact on the retrieval accuracy.



This factor has the same impact than the use of a Karnieli2 A, B, C, or D spectrum, which increases linearly the soil reflectance and increase the variation with the vegetation reference spectrum.

### 4.6.7.4. Impact of the scaling factor F

F scaling factor allows to adapt the surface reflectance level retrieved by the processing to the one obtained by the linear mixing of reference spectra. It means that at the first iteration, the surface reflectances are equal to the surface reflectance obtained by the mixing of reference spectra and the NDVI. If the F factor changes, the surface reflectance is equal to 1.2 times the reflectance mixing surface reflectance.

The impact of the F factor change is low. F scaling is set to 1 in the processing.

### 4.6.7.5. Impact of the uncertainty in the aerosol type knowledge

The aerosol type is considered in the BAER processing as an a priori knowledge. Its influence is studied here through the use of the LUT which link the aerosol reflectance to the aerosol optical thickness. Three LUT are available in the processing: LACE 98, OPAC average continental and OPAC clean continental. They are related to the aerosol type, and single scattering albedo. The slope linking both variables is higher for continental aerosol type than for the LACE.

In this study, the reference case uses the LACE-98 aerosol type as input. The studied case uses the OPAC-Continental. The differences of the LUT are seen on the next figure, mainly in the backscattering direction.

| date     | Nb pixel | Offset | Slope  | $r^2$  | rmse   | Mean baer | Mean ddv | Sdt baer | Sdt ddv |
|----------|----------|--------|--------|--------|--------|-----------|----------|----------|---------|
| 5072003  | 5147     | 0.2404 | 1.1550 | 0.5548 | 0.2559 | 0.3537    | 0.0981   | 0.1193   | 0.0770  |
| 30042003 | 82484    | 0.2901 | 1.4889 | 0.3389 | 0.3501 | 0.4713    | 0.1217   | 0.1038   | 0.0406  |

The results are illustrated for the alta foresta site for the estimation of the AOT at 560 nm.

The rmse is poor, where the correlation decreases from 80% for the reference case to 55 and 35%. The relation is highly biased. The offset of the relation is increased by a two factor.

As results of the sensitivity study, we see that the accuracy of the retrieval decreases with the change of aerosol type prior information. The coefficient of determination  $(r^2)$  does not decrease too much, but the offset of the relationship changes providing increasing of the rmse.

### 4.7. Conclusion

The retrieval of both aerosol optical thickness and angstrom coefficient has been made over more than 50 MERIS L2 images. The validation of the results has been made by intercomparing the BAER products with other satellite products, MERIS official products over ddv and daily MODIS atmosphere products. The comparison has been made at three channels, 412 nm, 560 nm and 865 nm. We can see that the results in the channel 1 are good, and decrease with the increase of the wavelength. However, the results are highly dependent on the cloud presence and filtering, and to the colour of the soil.

As it has been written in the ATBD, there are at least two interests for the AOT retrieval. The first one concerns the environmental study, and the second one deals with the use of the AOT product in the atmospheric correction scheme. The objectives behind the atmospheric correction processing



| Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
|                                                       | Issue | 1                | Date | 31/03/06 |
|                                                       | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 72               |      |          |

being to estimation the biophysical variables such as LAI and fapar, which are highly depending on the red, green, and near infra red reflectance levels. The level of the minimum accuracy to have to perform the atmospheric correction is about 0.05 at 550 nm. This level is reached using the BAER processor when extreme conditions of cloudiness and soil brightness are discarded from the processing.

A sensitivity study allows to confirm the choice of the input parameter of the IBAER processor in term of aerosol characterisation. All studied factors have statistically a low impact on the results, except the prior knowledge of aerosol, which is an input of the processing. This is the reason why the choice of the parameter is let to the user and to his prior knowledge of the studied area.

# 4.8. **Possible ways to improve the algorithm**

The improvement concerns the smoothing of the AOT map. These maps have used as input of the atmospheric correction processor. When the retrieval has failed, the pixel is declared invalid, so that no surface reflectances are computed. These invalid AOTs prevent consequently the use of the processors dedicated to the estimation of biophysical products from the surface reflectances. A way to circumvent this effect could be to degrade the spatial resolution of the AOT maps using an acceptable NxN window smoothing, N to be defined, between 5 and 10 km, in order to fill a maximum of pixels, without create information.


## 5. Validation of surface reflectances

## 5.1. Introduction

The surface reflectance product results from atmospheric correction of the top of the aerosol reflectance in the 13 land bands. It is required as input for studies on Land cover/change, fire, vegetation biophysical properties (LAI, FPAR )... The accuracy of the Surface Reflectance product is mostly driven by the knowledge of the AOT. Vermote et al. 1996, report that the uncertainty on the AOT estimation involve an uncertainty on surface reflectances which varies between 0.003 and 0.008 for AOT at 550 nm of 0.1 and 0.004 to 0.18 for AOT at 550 nm of 0.5.

BAER algorithm provides aerosol estimates with good rmse over areas with dense, dark vegetation. The objectives of the study is to compare the surface reflectances obtained by the two methods integrated in BAER, by using the aerosol optical thickness estimated in the previous step. These are:

- The SMAC method, which is used for a large number of data processing, and reprocessing, in an operational mode or not (for instance, the atmospheric correction for the VEGETATION sensor re made using the SMAC method; the reprocessing of data for the CYCLOPES project (Baret et al; 2003) for AVHRR, VEGETATION is also made using SMAC, and MODIS monthly data in input.
- The UBAC method which is linked to the BAER processor because the surface reflectances are computed at each iteration until reaching the convergence of the processes. In this case, the aerosol reflectance is computed with the last aerosol optical thickness in each MERIS channel and removed from the level 2 MERIS data, according to the equations described in the ATBD.

The surface reflectance validation is a difficult exercise, because it is difficult to compare a mean directional value of surface reflectance with a reflectance measured at ground level by an instrument. The pixel heterogeneity (1 km) prevents to compare both measurements.

Within this paragraph, we compared the surface reflectances estimated with both methods in four channels: Channel 1, 5, 7 and 13.

## 5.2. Results

## 5.2.1. Presentation

The results are represented for each selected image and for channels 2, 5 7 and 13:

| Surface reflectance in channel 2, 5, 7 or 13<br>estimated using SMAC | Surface reflectance in channel 2, 5, 7 or 13<br>estimated using UBAC |
|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Surface reflectance difference                                       | Histogram of surface reflectance difference.                         |
| SMAC minus UBAC                                                      | The title of this image provide with the date of                     |

#### Table 6:Table showing how the results are summarised.

© Noveltis 2006



|                   | acquisition, the channel number, the mean of the difference, and the standard deviation of the difference. |
|-------------------|------------------------------------------------------------------------------------------------------------|
| AOT map at 550 nm | Histogram of AOT at 550 nm                                                                                 |

An example of image acquired over South of France and Italy is given hereafter.

For all channels, we can see that the SMAC method provides higher values of surface reflectances. The mean of the difference is about 0.02 for the three first channels, whereas it is 0.04 in the near infrared channel. Where the AOT at 550 is less than 0.2, the results are equivalent, whereas when the AOT increases (due to higher value or non clear pixel), the UBAC value are very low, or provide negative values which are set to 0, with an flag declared as invalid.



Figure 35: Results for channel 2



| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 75               |      |          |



Figure 36: Results for channel 5





| Noveltis |
|----------|

| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 76               |      |          |



#### Figure 38: Results for channel 13

## 5.2.2. Summary of the differences for the other images

The following table provides the statistical results obtained for all images.

| Date             | Mean difference | Standard deviation of the difference |
|------------------|-----------------|--------------------------------------|
| Channel 2 -22/03 | 0.0295          | 0.0328                               |
| Ch 5             | 0.025           | 0.028                                |
| Ch 7             | 0.020           | 0.024                                |
| Ch 13            | 0.011           | 0.026                                |
| Ch.2 – 30/04     | 0.0099          | 0.026                                |
| Ch 5             | 0.0085          | 0.022                                |
| Ch 7             | 0.005           | 0.018                                |
| Ch 13            | 0.006           | 0.038                                |
| Ch2- 23/05       | 0.027           | 0.069                                |
| Ch 5             | 0.024           | 0.057                                |
| Ch 7             | 0.019           | 0.05                                 |
| Ch 13            | 0.027           | 0.081                                |
| Ch2-01/06        | 0.034           | 0.064                                |

© Noveltis 2006



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Papart on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 77               |      |          |

| Ch.5         0.035         0.051           Ch 7         0.028         0.042           Ch 13         0.043         0.076           Ch-1606         0.017         0.043           Ch 5         0.016         0.036           Ch 13         0.021         0.07           Ch 2106         0.016         0.043           Ch 13         0.021         0.07           Ch 2106         0.016         0.046           Ch 7         0.014         0.038           Ch 7         0.014         0.037           Ch 13         0.039         0.1099           Ch 21/07         0.014         0.033           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 7         0.012         0.030           Ch 7         0.020         0.030           Ch 7         0.020         0.030           Ch 3         0.044         0.085           Ch 7         0.020         0.030           Ch 3         0.044         0.085           Ch 4         0.016         0.019           Ch 5         0.034         0.061           Ch 6<                                                                | Date        | Mean difference | Standard deviation of the difference |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|--------------------------------------|--|--|
| Ch 7         0.028         0.042           Ch 13         0.043         0.076           Ch21606         0.017         0.043           Ch 5         0.016         0.036           Ch 7         0.010         0.028           Ch 13         0.021         0.07           Ch2-21/06         0.016         0.046           Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 13         0.039         0.1099           Ch 2-11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.016         0.028           Ch 6         0.016         0.028           Ch 7         0.016         0.028           Ch 7         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 7         0.021         0.038           Ch 7         0.020         0.038           Ch 7         0.021         0.038           Ch 6         0.021         0.031           Ch 7         0.020         0.038           Ch 7<                                                                | Ch 5        | 0.035           | 0.051                                |  |  |
| Ch 13         0.043         0.076           Ch2-1606         0.017         0.043           Ch 5         0.016         0.036           Ch 7         0.010         0.028           Ch 13         0.021         0.07           Ch2-21/06         0.016         0.046           Ch 7         0.016         0.046           Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 13         0.039         0.1099           Ch2-11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 2<807                                                                                                                                                                                                                                                                                                                                                                          | Ch 7        | 0.028           | 0.042                                |  |  |
| Ch2-16:06         0.017         0.043           Ch 5         0.016         0.036           Ch 7         0.010         0.028           Ch 13         0.021         0.07           Ch2-2106         0.016         0.046           Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 7         0.008         0.03           Ch 7         0.014         0.038           Ch 7         0.014         0.033           Ch 6         0.0199         0.1099           Ch2-11/07         0.014         0.033           Ch 7         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 7         0.012         0.021           Ch 7         0.023         0.082           Ch 7         0.024         0.048           Ch 5         0.027         0.038           Ch 6         0.010         0.019           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch 22.08         0.008         0.023           Ch                                                                | Ch 13       | 0.043           | 0.076                                |  |  |
| Ch 5         0.016         0.036           Ch 7         0.010         0.028           Ch 13         0.021         0.07           Ch2-21.06         0.016         0.046           Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 7         0.008         0.03           Ch 7         0.014         0.033           Ch 13         0.016         0.022           Ch 7         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 5         0.027         0.038           Ch 5         0.020         0.030           Ch 6         0.020         0.030           Ch 7         0.020         0.030           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch 20208         0.008         0.023           Ch 6         0.010         0.019           Ch 7         0.028         0.044           Ch 7         0.028         0.041           Ch 13                                                                       | Ch2-16/06   | 0.017           | 0.043                                |  |  |
| Ch 7         0.010         0.028           Ch 13         0.021         0.07           Ch 2-21/06         0.016         0.046           Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 13         0.039         0.1099           Ch 2-11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 7         0.020         0.030           Ch 13         0.021         0.038           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch 2-2/08         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch 2-2/08         0.034         0.061           Ch 7         0.028         0.016                                                                     | Ch 5        | 0.016           | 0.036                                |  |  |
| Ch 13         0.021         0.07           Ch2-21/06         0.016         0.046           Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 13         0.039         0.1099           Ch2-11/07         0.014         0.033           Ch 7         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 7         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 6         0.027         0.038           Ch 7         0.020         0.030           Ch 13         0.024         0.048           Ch 5         0.027         0.038           Ch 6         0.010         0.019           Ch 7         0.020         0.030           Ch 13         0.004         0.025           Ch 20/08         0.034         0.067           Ch 13         0.028         0.014           Ch 7         0.028         0.011           Ch                                                                 | Ch 7        | 0.010           | 0.028                                |  |  |
| Ch2-21/06         0.016         0.046           Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 13         0.039         0.1099           Ch2-11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 7         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 7         0.0076         0.016           Ch 13         0.007         0.016           Ch 7         0.028         0.042           Ch 7 <td>Ch 13</td> <td>0.021</td> <td>0.07</td>                        | Ch 13       | 0.021           | 0.07                                 |  |  |
| Ch 5         0.014         0.038           Ch 7         0.008         0.03           Ch 13         0.039         0.1099           Ch 2 - 11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 7         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 3         0.044         0.085           Ch 4         0.048         0.023           Ch 7         0.020         0.030           Ch 3         0.044         0.085           Ch 4         0.085         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.0034         0.051           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch 7 <td>Ch2-21/06</td> <td>0.016</td> <td>0.046</td>                   | Ch2-21/06   | 0.016           | 0.046                                |  |  |
| Ch 7         0.008         0.03           Ch 13         0.039         0.1099           Ch 2 - 11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 2 28/07         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch 20208         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch 20208         0.0334         0.067           Ch 13         0.028         0.041           Ch 7         0.028         0.051           Ch 7         0.014         0.025           Ch 7         0.014         0.025                                                                    | Ch 5        | 0.014           | 0.038                                |  |  |
| Ch 13         0.039         0.1099           Ch 2 - 11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch 2 28/07         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 7         0.020         0.030           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch 202/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch 202/08         0.0334         0.067           Ch 13         0.008         0.025           Ch 205/08         0.0334         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.031           Ch 7         0.028         0.051           Ch 7         0.014         0.025           Ch 7         0.013         0.034      <                                                    | Ch 7        | 0.008           | 0.03                                 |  |  |
| Ch2 - 11/07         0.014         0.033           Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch2-28/07         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 7         0.020         0.030           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch2-02/08         0.0334         0.067           Ch 7         0.0076         0.016           Ch 7         0.008         0.025           Ch2-25/08         0.0334         0.067           Ch 3         0.028         0.042           Ch 13         0.028         0.051           Ch 7         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.011         0.021                                                              | Ch 13       | 0.039           | 0.1099                               |  |  |
| Ch 5         0.016         0.028           Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch2-28/07         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch2-02/08         0.0334         0.067           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch2-02/08         0.0334         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch 7         0.014         0.025           Ch 7         0.014         0.021           Ch 13         0.0103         0.034                                                                 | Ch2 - 11/07 | 0.014           | 0.033                                |  |  |
| Ch 7         0.012         0.022           Ch 13         0.023         0.082           Ch2-28/07         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch 202/08         0.0334         0.067           Ch 13         0.0028         0.025           Ch 202/08         0.0334         0.067           Ch 5         0.034         0.025           Ch 6         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.011         0.021           Ch 13         0.0103         0.034           Ch 7         0.011         0.025           Ch 7         0.011         0.025           Ch 7         0.013         0.024                                                                  | Ch 5        | 0.016           | 0.028                                |  |  |
| Ch 13         0.023         0.082           Ch2- 28/07         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch 13         0.008         0.025           Ch 5         0.034         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 7         0.028         0.051           Ch 7         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.014         0.021           Ch 5         0.014         0.021           Ch 7         0.013         0.034           Ch 7         0.013         0.023           Ch 7         0.013         0.023           Ch 7         0.013         0.024           Ch 7 </td <td>Ch 7</td> <td>0.012</td> <td>0.022</td>                 | Ch 7        | 0.012           | 0.022                                |  |  |
| Ch2- 28/07         0.024         0.048           Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch 2-02/08         0.034         0.067           Ch 5         0.0010         0.019           Ch 7         0.008         0.025           Ch 2-25/08         0.0334         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch 2-15/09         0.014         0.0314           Ch 5         0.014         0.025           Ch 7         0.013         0.034           Ch 5         0.014         0.025           Ch 7         0.013         0.034           Ch 5         0.014         0.021           Ch 5         0.013         0.023           Ch 5         0.013         0.023 <tr< td=""><td>Ch 13</td><td>0.023</td><td>0.082</td></tr<> | Ch 13       | 0.023           | 0.082                                |  |  |
| Ch 5         0.027         0.038           Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch2-02/08         0.034         0.067           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch2-25/08         0.0334         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch 2-15/09         0.014         0.025           Ch 7         0.011         0.021           Ch 13         0.0103         0.034           Ch 5         0.014         0.025           Ch 7         0.013         0.034           Ch 5         0.013         0.034           Ch 5         0.013         0.028           Ch 5         0.013         0.023           Ch 5         0.013         0.023                                                                   | Ch2- 28/07  | 0.024           | 0.048                                |  |  |
| Ch 7         0.020         0.030           Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch13         0.008         0.025           Ch2-02/08         0.0374         0.067           Ch 7         0.038         0.025           Ch2-02/08         0.0334         0.067           Ch 13         0.028         0.042           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch 5         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.014         0.021           Ch 13         0.0103         0.034           Ch 5         0.014         0.021           Ch 13         0.0103         0.034           Ch 5         0.014         0.024           Ch 7         0.013         0.023           Ch 5         0.014         0.024           Ch 7         0.013         0.023           Ch 7         0.013         0.024           <                                                            | Ch 5        | 0.027           | 0.038                                |  |  |
| Ch 13         0.044         0.085           Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch2-25/08         0.0334         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch 7         0.028         0.051           Ch 13         0.028         0.051           Ch 5         0.014         0.0314           Ch 5         0.011         0.025           Ch 7         0.013         0.034           Ch 5         0.014         0.021           Ch 13         0.0103         0.034           Ch 7         0.013         0.023           Ch 7         0.013         0.024           Ch 7         0.013         0.023           Ch 7         0.013         0.023           Ch 7         0.013         0.023                                                                                                                                                                    | Ch 7        | 0.020           | 0.030                                |  |  |
| Ch2-02/08         0.008         0.023           Ch 5         0.010         0.019           Ch 7         0.0076         0.016           Ch 13         0.008         0.025           Ch2-25/08         0.0334         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch 7         0.028         0.051           Ch 13         0.028         0.051           Ch 5         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.014         0.025           Ch 7         0.0103         0.034           Ch 13         0.0103         0.034           Ch 5         0.014         0.025           Ch 7         0.0103         0.028           Ch 5         0.014         0.024           Ch 7         0.013         0.023           Ch 7         0.013         0.023           Ch 13         0.012         0.034                                                                                                                        | Ch 13       | 0.044           | 0.085                                |  |  |
| Ch 5       0.010       0.019         Ch 7       0.0076       0.016         Ch 13       0.008       0.025         Ch2-25/08       0.0334       0.067         Ch 5       0.034       0.051         Ch 7       0.028       0.042         Ch 13       0.028       0.051         Ch 2-15/09       0.014       0.0314         Ch 5       0.014       0.025         Ch 7       0.011       0.025         Ch 7       0.014       0.025         Ch 7       0.014       0.025         Ch 7       0.011       0.021         Ch 13       0.0103       0.034         Ch 13       0.0103       0.034         Ch 13       0.013       0.023         Ch 5       0.014       0.024         Ch 7       0.013       0.023         Ch 13       0.013       0.023                                                                                                                                                                                                                                                                                                                                                                       | Ch2-02/08   | 0.008           | 0.023                                |  |  |
| Ch 7       0.0076       0.016         Ch 13       0.008       0.025         Ch2-25/08       0.0334       0.067         Ch 5       0.034       0.051         Ch 7       0.028       0.042         Ch 13       0.028       0.051         Ch2-15/09       0.014       0.0314         Ch 5       0.014       0.025         Ch 7       0.011       0.025         Ch 7       0.011       0.021         Ch 13       0.0103       0.034         Ch 5       0.014       0.025         Ch 7       0.011       0.021         Ch 13       0.0103       0.034         Ch 7       0.013       0.023         Ch 13       0.019       0.028         Ch 5       0.014       0.024         Ch 7       0.013       0.023         Ch 7       0.013       0.023                                                                                                                                                                                                                                                                                                                                                                         | Ch 5        | 0.010           | 0.019                                |  |  |
| Ch 13       0.008       0.025         Ch2-25/08       0.0334       0.067         Ch 5       0.034       0.051         Ch 7       0.028       0.042         Ch 13       0.028       0.051         Ch2-15/09       0.014       0.0314         Ch 5       0.014       0.025         Ch 7       0.014       0.021         Ch 13       0.0103       0.034         Ch 5       0.0103       0.021         Ch 6       0.0103       0.028         Ch 7       0.0103       0.021         Ch 13       0.0103       0.028         Ch 5       0.014       0.024         Ch 5       0.014       0.024         Ch 7       0.013       0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ch 7        | 0.0076          | 0.016                                |  |  |
| Ch2-25/08         0.0334         0.067           Ch 5         0.034         0.051           Ch 7         0.028         0.042           Ch 13         0.028         0.051           Ch2-15/09         0.014         0.0314           Ch 5         0.014         0.025           Ch 7         0.011         0.021           Ch 13         0.0103         0.034           Ch 5         0.0103         0.034           Ch 6         0.011         0.021           Ch 7         0.0103         0.034           Ch 6         0.0103         0.028           Ch 5         0.014         0.024           Ch 7         0.013         0.024           Ch 7         0.013         0.024                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ch 13       | 0.008           | 0.025                                |  |  |
| Ch 5       0.034       0.051         Ch 7       0.028       0.042         Ch 13       0.028       0.051         Ch2-15/09       0.014       0.0314         Ch 5       0.014       0.025         Ch 7       0.011       0.021         Ch 7       0.0103       0.034         Ch 13       0.0103       0.034         Ch 7       0.0103       0.021         Ch 13       0.0103       0.024         Ch 5       0.014       0.023         Ch 5       0.013       0.023         Ch 7       0.013       0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ch2-25/08   | 0.0334          | 0.067                                |  |  |
| Ch 70.0280.042Ch 130.0280.051Ch2-15/090.0140.0314Ch 50.0140.025Ch 70.0110.021Ch 130.01030.034Ch2-15/090.0090.028Ch 50.0140.024Ch 70.0130.024Ch 50.0130.023Ch 130.0120.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ch 5        | 0.034           | 0.051                                |  |  |
| Ch 130.0280.051Ch2-15/090.0140.0314Ch 50.0140.025Ch 70.0110.021Ch 130.01030.034Ch 50.0140.028Ch 70.0130.023Ch 130.0130.023Ch 130.0120.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ch 7        | 0.028           | 0.042                                |  |  |
| Ch2-15/09       0.014       0.0314         Ch 5       0.014       0.025         Ch 7       0.011       0.021         Ch 13       0.0103       0.034         Ch2-15/09       0.009       0.028         Ch 5       0.014       0.024         Ch 7       0.013       0.023         Ch 13       0.013       0.024         Ch 7       0.013       0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ch 13       | 0.028           | 0.051                                |  |  |
| Ch 5       0.014       0.025         Ch 7       0.011       0.021         Ch 13       0.0103       0.034         Ch2-15/09       0.009       0.028         Ch 5       0.014       0.024         Ch 7       0.013       0.023         Ch 13       0.012       0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ch2-15/09   | 0.014           | 0.0314                               |  |  |
| Ch 7       0.011       0.021         Ch 13       0.0103       0.034         Ch2-15/09       0.009       0.028         Ch 5       0.014       0.024         Ch 7       0.013       0.023         Ch 13       0.012       0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ch 5        | 0.014           | 0.025                                |  |  |
| Ch 13       0.0103       0.034         Ch2-15/09       0.009       0.028         Ch 5       0.014       0.024         Ch 7       0.013       0.023         Ch 13       0.012       0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ch 7        | 0.011           | 0.021                                |  |  |
| Ch2-15/09         0.009         0.028           Ch 5         0.014         0.024           Ch 7         0.013         0.023           Ch 13         0.012         0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ch 13       | 0.0103          | 0.034                                |  |  |
| Ch 5         0.014         0.024           Ch 7         0.013         0.023           Ch 13         0.012         0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ch2-15/09   | 0.009           | 0.028                                |  |  |
| Ch 7         0.013         0.023           Ch 13         0.012         0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ch 5        | 0.014           | 0.024                                |  |  |
| Ch 13 0.012 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ch 7        | 0.013           | 0.023                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ch 13       | 0.012           | 0.034                                |  |  |



|                                                       | Ref   | NOV-3341-NT-3284 |      |          |
|-------------------------------------------------------|-------|------------------|------|----------|
| Penert on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |
|                                                       | Page  | 78               |      |          |

| Date      | Mean difference | Standard deviation of the difference |
|-----------|-----------------|--------------------------------------|
| Ch2-18/11 | 0.012           | 0.04                                 |
| Ch 5      | 0.013           | 0.033                                |
| Ch 7      | 0.011           | 0.028                                |
| Ch 13     | 0.013           | 0.032                                |
| Ch2-21/11 | 0.03            | 0.065                                |
| Ch 5      | 0.02            | 0.057                                |
| Ch 7      | 0.018           | 0.052                                |
| Ch 13     | 0.027           | 0.096                                |

The mean of the difference is about 1 or 2%, except on the channel 13 on area where the AOT is high (for the date 28/7 and 21/06). In this case, the standard deviation of the reflectance difference is higher than in the other channels. The standard deviation is a good indicator of cloudy pixel presence which is not detected by the filtering. For these pixels, the AOT is high, and clouds or sub pixels clouds are assimilated to clear pixels and processed as if they were valid.

Over clear area, the mean difference is about 1%.

## 5.3. Conclusion

The comparison of surface reflectance between the two methods shows the same trends as shown previously on all the images. The aerosol reflectance computed by UBAC is higher than the one computed by SMAC. This leads to have SMAC surface reflectance higher than UBAC surface reflectances in the four channels. The impact of the differences is not the same in the red visible channel than in the NIR channels. The study trends to conclude that the difference is low, about in mean 1 to 2%.

## 5.4. Possible ways to validate the surface reflectance results

To complete the validation process, ground measurement of the surface reflectance could be compared to results obtained using full resolution of MERIS data. The use of the Barrax database acquired during the SPARC measurement campaign is a possibility.



## 6. Conclusion

The processor developed in the frame work of the study has been developed to be integrated to the BEAM software, whose aim is to facilitate the utilisation, the viewing and processing of ESA MERIS, data. The IBAER developed will complement the collection of existing executable tools. Its use has a great interest because it allows to achieve the processing of the Level 2 MERIS by removing the aerosol signal, providing both aerosol optical thickness and surface reflectances in the thirteen MERIS channels.

In this study, we have presented the results of the validation of both atmosphere products (aerosol optical thickness and angstrom exponent), and surface reflectances. The validation has been performed in an indirect way (using satellite data) and by direct way, by comparing the results to in situ sun photometer measurements of the AERONET network.

The correlation between products varies with the channel. It is good at 412 nm, and 550 nm. The accuracy of the retrieval against the ddv is less than 0.1 at 550 nm, with better value when the land cover is not very bright. The method provides more results than the one which is in the operational ESA processor. It is not applicable only over dark target, but can be extended to almost most surface type. The case of bright surface provides however results with less accuracy.

Once the AOT estimated, the atmospheric process can be applied. Two methods are compared in this report. They provided results with a few difference in the visible channels (in the order of 1 to 2 %).

We note at this time, that the cloud filtering which has been assessed in dedicated section is not reliable enough to remove all clouds. This provides high value of Aerosol optical thickness, and inaccurate surface reflectances. SMAC seems more resistant to these high values where UBAC provides negatives values of surface reflectances.

The validation has been performed on more than 50 MERIS images. All the results are summarised in the annexe report, referred by NOV-3341-NT-3292.



## 7. Annex 1 : List of the selected MERIS products

#### Alta\_Foresta:

- MER\_RR\_\_2PP01R20030430\_132600\_000001072016\_00024\_06090\_0001.N1
- MER\_RR\_2PP01R20030709\_132602\_000001072018\_00024\_07092\_0001.N1
- MER\_RR\_2PP01R20030725\_132315\_000001102018\_00253\_07321\_0001.N1
- MER\_RR\_2PP01R20030810\_132026\_000001102018\_00482\_07550\_0001.N1

#### Bondville

|          | - | MER_RR2PP01R20030323_162735_000001072014_00484_05548_0001.N1  |
|----------|---|---------------------------------------------------------------|
|          | - | MER_RR2PP01R20030401_164427_000001072015_00112_05677_0001.N1  |
|          | - | MER_RR2PP01R20030620_163016_000001102017_00255_06822_0001.N1  |
|          | - | MER_RR2PP01R20030621_155918_000001102017_00269_06836_0001.N1  |
|          | - | MER_RR2PP01R20030920_163857_000001072020_00069_08139_0001.N1  |
|          | - | MER_RR2PP01R20030924_161333_000001102020_00126_08196_0001.N1  |
|          | - | MER_RR2PP01R20031022_163309_000001102021_00026_08597_0001.N1  |
|          | - | MER_RR2PP01R20031120_162159_000001102021_00441_09012_0001.N1  |
|          | - | MER_RR2PP01R20031129_163852_000001102022_00069_09141_0001.N1  |
| Bordeaux |   |                                                               |
|          | - | MER_RR2PP01R20030619_101753_000001102017_00237_06804_0001.N1  |
|          | - | MER_RR2PP01R20030711_102624_000001072018_00051_07119_0001.N1  |
|          | - | MER_RR2PP01R20030802_103459_000001102018_00366_07434_0001.N1  |
|          | - | MER_RR2PP01R20030825_101253_000001072019_00194_07763_0001.N1  |
|          | - | MER_RR2PP01R20030915_105232_000001102019_00495_08064_0001.N1  |
| GSFC     |   |                                                               |
|          | - | MER_RR2PP01R20030324_155531_000001072014_00498_05562_0001.N1  |
|          | - | MER_RR2PP01R20030325_152423_000001072015_00011_05576_0001.N1  |
|          | - | MER_RR2PP01R20031030_154125_000001072021_00140_08711_0001.N1  |
|          | - | MER_RR2PP01R20031121_154959_000001072021_00455_09026_0001.N1  |
| HOWLAND  |   |                                                               |
|          | - | MER RR 2PP01R20030616 151327 000001102017 00197 06764 0001.N1 |
| ISPRA    |   |                                                               |
|          | - | MER RR 2PP01R20030620 094622 000001072017 00251 06818 0001.N1 |
|          | - |                                                               |
|          | - | MER_RR_2PP01R20030722_094006_000001072018_00208_07276_0001.N1 |
|          | - | MER_RR_2PP01R20030725_094625_000001102018_00251_07319_0001.N1 |
|          | - | MER RR 2PP01R20030728 095206 000001102018 00294 07362 0001.N1 |
|          | - | MER_RR_2PP01R20030804_093123_000001102018_00394_07462_0001.N1 |
|          | - | MER_RR2PP01R20030810_094352_000001072018_00480_07548_0001.N1  |
|          | _ | MER_RR2PP01R20030813_094931_000001102019_00022_07591_0001.N1  |
|          | - | MER_RR2PP01R20030823_093507_000001072019_00165_07734_0001.N1  |

© Noveltis 2006



#### LAMPEDUSA

- MER\_RR\_2PP01R20030601\_094456\_000001072016\_00480\_06546\_0001.N1
- MER\_RR\_\_2PP01R20030611\_093044\_000001102017\_00122\_06689\_0001.N1
- MER\_RR\_2PP01R20030722\_094215\_000001072018\_00208\_07276\_0001.N1

#### LILLE

- MER\_RR\_2PP01R20030322\_101214\_000001102014\_00466\_05530\_0001.N1
- MER\_RR\_\_2PP01R20030322\_101236\_000001072014\_00466\_05530\_0001.N1
- MER\_RR\_2PP01R20030616\_101043\_000001102017\_00194\_06761\_0001.N1
- MER\_RR\_\_2PP01R20030714\_102954\_000001102018\_00094\_07162\_0001.N1

#### MARICOPA

| - | MER_RR_2PP01R20030116_174256_000001072013_00041_04604_0001.N1 |
|---|---------------------------------------------------------------|
| - | MER_RR_2PP01R20030119_174836_000001072013_00084_04647_0001.N1 |
| - | MER_RR2PP01R20030129_173427_000001072013_00227_04790_0001.N1  |
| - | MER_RR2PP01R20030204_174545_000001102013_00313_04876_0001.N1  |
| - | MER_RR2PP01R20030311_174615_000001072014_00313_05377_0001.N1  |
| - | MER_RR2PP01R20030330_174838_000001072015_00084_05649_0001.N1  |
| - | MER_RR_2PP01R20030330_174917_000001072015_00084_05649_0001.N1 |
| - | MER_RR_2PP01R20030504_174917_000001072016_00084_06150_0001.N1 |
| - | MER_RR_2PP01R20030510_180035_000001072016_00170_06236_0001.N1 |
| - | MER_RR_2PP01R20030621_174047_000001102017_00270_06837_0001.N1 |
| - | MER_RR_2PP01R20030707_173722_000001072017_00499_07066_0001.N1 |
| - | MER_RR_2PP01R20030710_174329_000001102018_00041_07109_0001.N1 |
| - | MER_RR2PP01R20030713_174843_000001072018_00084_07152_0001.N1  |
| - | MER_RR2PP01R20030713_174911_000001072018_00084_07152_0001.N1  |
| - | MER_RR_2PP01R20030912_173149_000001072019_00456_08025_0001.N1 |
| - | MER_RR2PP01R20030912_173225_000001072019_00456_08025_0001.N1  |
| - | MER_RR_2PP01R20030915_173728_000001102019_00499_08068_0001.N1 |
| - | MER_RR_2PP01R20030915_173807_000001072019_00499_08068_0001.N1 |
| - | MER_RR_2PP01R20030918_174337_000001072020_00041_08111_0001.N1 |
| - | MER_RR_2PP01R20030921_174916_000001072020_00084_08154_0001.N1 |
| - | MER_RR_2PP01R20030928_172931_000001072020_00184_08254_0001.N1 |
| - | MER_RR_2PP01R20030928_172948_000001072020_00184_08254_0001.N1 |
| - | MER_RR_2PP01R20031017_173212_000001102020_00456_08526_0001.N1 |
| - | MER_RR_2PP01R20031020_173800_000001102020_00499_08569_0001.N1 |
| - | MER_RR_2PP01R20031023_174331_000001102021_00041_08612_0001.N1 |
| - | MER_RR_2PP01R20031026_174920_000001102021_00084_08655_0001.N1 |
| - | MER_RR_2PP01R20031105_173431_000001102021_00227_08798_0001.N1 |
| - | MER_RR_2PP01R20031121_173142_000001102021_00456_09027_0001.N1 |
| - | MER_RR_2PP01R20031127_174332_000001102022_00041_09113_0001.N1 |
|   |                                                               |



#### MONGU

- MER\_RR\_\_2PP01R20030421\_080806\_000001102015\_00393\_05958\_0001.N1
- MER\_RR\_\_2PP01R20030507\_080515\_000001072016\_00121\_06187\_0001.N1
- MER\_RR\_2PP01R20030523\_080222\_000001072016\_00350\_06416\_0001.N1
- MER\_RR\_\_2PP01R20030614\_081057\_000001072017\_00164\_06731\_0001.N1
- MER\_RR\_2PP01R20030709\_082507\_000001102018\_00021\_07089\_0001.N1
- MER\_RR\_\_2PP01R20030807\_081352\_000001102018\_00436\_07504\_0001.N1

#### SKUKUZA

- MER\_RR\_\_2PP01R20030429\_071914\_000001072016\_00006\_06072\_0001.N1
- MER\_RR\_\_2PP01R20030524\_073317\_000001102016\_00364\_06430\_0001.N1
- MER\_RR\_2PP01R20031109\_072206\_000001072021\_00278\_08849\_0001.N1
- MER\_RR\_\_2PP01R20031118\_073905\_000001072021\_00407\_08978\_0001.N1



# 8. Annexe 2 : Overview of the Input/Ouput data of the IBAER processor

## 8.1. Input Data

#### Top of aerosol reflectances

- L2 Top of aerosol reflectance Channel 1
- L2 Top of aerosol reflectance Channel 2
- L2 Top of aerosol reflectance Channel 3
- L2 Top of aerosol reflectance Channel 4
- L2 Top of aerosol reflectance Channel 5
- L2 Top of aerosol reflectance Channel 6
- L2 Top of aerosol reflectance Channel 7
- L2 Top of aerosol reflectance Channel 8
- L2 Top of aerosol reflectance Channel 9
- L2 Top of aerosol reflectance Channel 10
- L2 Top of aerosol reflectance Channel 12
- L2 Top of aerosol reflectance Channel 13
- L2 Top of aerosol reflectance Channel 14

#### L2\_Flags

#### Pressure

#### **Tie-point information**

- Solar and satellite zenith angles
- Solar and satellite azimuth angles
- Geographical coordinates

## 8.2. **Products**

The outputs of the processor are

#### **CLOUD** products

Cloud mask

#### **ATMOSPHERE** products

- The angstrom exponent ALPHA
- The Aerosol Optical Thickness at 412nm
- The Aerosol Optical Thickness AOT at 440 nm

#### © Noveltis 2006

| Noveltis |
|----------|

- The Aerosol Optical Thickness AOT at 550 nm

#### SURFACE REFLECTANCE products

- L2 Surface reflectance Channel 1
- L2 Surface reflectance Channel 2
- L2 Surface reflectance Channel 3
- L2 Surface reflectance Channel 4
- L2 Surface reflectance Channel 5
- L2 Surface reflectance Channel 6
- L2 Surface reflectance Channel 7
- L2 Surface reflectance Channel 8
- L2 Surface reflectance Channel 9
- L2 Surface reflectance Channel 10
- L2 Surface reflectance Channel 12
- L2 Surface reflectance Channel 13
- L2 Surface reflectance Channel 14

#### **Quality indicator (Flag channel)**

The quality indicator contains seven fields which qualify the quality of the input and the quality of the output. The value of the flag channel is the sum of the fields which are activated (true).

| Flag denomination  | Value if true | Valid if false |
|--------------------|---------------|----------------|
| Invalid            | 1             | 0              |
| Invalid_Input      | 2             | 0              |
| Cloud_input        | 8             | 0              |
| ALPHA_OUT_OF_RANGE | 16            | 0              |
| AOT_OUT_OF_RANGE   | 32            | 0              |
| Invalid_output     | 64            | 0              |
| Smac_correction    | 128           | 0              |



# 9. Annexe 3: Extensive cloud detection assessment on L2 MERIS data

The following images represents the IBAER cloud mask over the coloured composition Of MERIS surface reflectance products. The blue values indicate the Level 2 cloud mask. The red values are the pixels that are detected by the BAER.

AltaForesta



Bondville





|    |                                                       | Ref   | NOV-3341-NT-3284 |      |          |  |
|----|-------------------------------------------------------|-------|------------------|------|----------|--|
|    | Papart on the validation of MEDIS IPAEP land products | Issue | 1                | Date | 31/03/06 |  |
|    | Report on the validation of MERIS IBAER land product  | Rev   | 1                | Date | 07/04/06 |  |
| is |                                                       | Page  | 86               |      |          |  |

<image>

## BORDEAUX





|                                                       | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
| Papart on the validation of MERIC IRAER land products | Issue | 1                | Date | 31/03/06 |  |
|                                                       | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 87               |      |          |  |

## BORDEAUX



#### South of France





|                                                       | Ref   | NOV | -3341-N | Г-3284   |
|-------------------------------------------------------|-------|-----|---------|----------|
| Popert on the validation of MEDIC IDAED land products | Issue | 1   | Date    | 31/03/06 |
| Report on the validation of MERIS IBAER land products | Rev   | 1   | Date    | 07/04/06 |
|                                                       | Page  | 88  |         |          |

## Lande forest



GFSC





|                                                       | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
| Penert on the validation of MEDIC IDAED land products | Issue | 1                | Date | 31/03/06 |  |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 89               |      |          |  |

### Howkland



## Ispra





|                                                       | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
| Popert on the validation of MEDIS IPAEP land products | Issue | 1                | Date | 31/03/06 |  |
| Report on the valuation of MERIS IBAER land products  | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 90               |      |          |  |

## Lampedusa



Lille





|                                                       | Ref   | NOV-3341-NT-3284 |      |          |  |
|-------------------------------------------------------|-------|------------------|------|----------|--|
| Papart on the validation of MEDIS IPAEP land products | Issue | 1                | Date | 31/03/06 |  |
| Report on the validation of MERIS IBAER land products | Rev   | 1                | Date | 07/04/06 |  |
|                                                       | Page  | 91               |      |          |  |

## Maricopa



Mongu





|                                                       | Ref   | Ref NOV-3341-NT-328 |      |          |  |
|-------------------------------------------------------|-------|---------------------|------|----------|--|
| Papart on the validation of MERIC IRAER land products | Issue | 1                   | Date | 31/03/06 |  |
| Report on the validation of MERIS IBAER land products | Rev   | 1                   | Date | 07/04/06 |  |
|                                                       | Page  | 92                  |      |          |  |

## SKUKUZA -





# 10. Annexe 4 : results of the comparison between BAER AOT and AOT over DDV

The results are summarised in tables containing

Column (1) is the site

Column (2) is the acquisition date of the analysed image

Column (3) is the acquisition hour of the analysed image

Column (4) is the variable analysed in the regression (baer versus ddv)

Column (5) is the number of pixels used in the analysis

Column (6) is the offset of the linear regression

Column (7) is the slope of the linear regression

Column (8) is the determination coefficient  $(r^2)$ 

Column (9) is the root mean square error (rmse)

Column (10) is the mean baer

Column (11) is the mean ddv

Column (12) is the standard deviation baer

Column (13) is the standard deviation ddv



## 10.1. Alta Foresta

| Site         | date     | hour   | variable | Nb pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|--------------|----------|--------|----------|----------|--------|---------|--------|--------|--------------|-------------|----------|---------|
| Alta_Foresta | 25072003 | 132315 | alpha    | 14007    | 0.5631 | 0.1459  | 0.0268 | 0.4572 | 0.6245       | 0.4212      | 0.4277   | 0.4795  |
| Alta_Foresta | 30042003 | 132600 | alpha    | 158811   | 0.5675 | -0.0262 | 0.0023 | 0.3914 | 0.5557       | 0.4518      | 0.1996   | 0.3678  |
| Alta_Foresta | 09072003 | 132602 | alpha    | 141599   | 0.7935 | -0.0570 | 0.0063 | 0.4890 | 0.7704       | 0.4048      | 0.2212   | 0.3073  |
| Alta_Foresta | 10082003 | 132026 | alpha    | 134590   | 0.5228 | 0.1323  | 0.0451 | 0.2967 | 0.5740       | 0.3875      | 0.1656   | 0.2660  |
| Alta_Foresta | 25072003 | 132315 | aot412   | 14007    | 0.1219 | 0.7376  | 0.9571 | 0.0869 | 0.2308       | 0.1475      | 0.0721   | 0.0956  |
| Alta_Foresta | 30042003 | 132600 | aot412   | 158811   | 0.1220 | 0.8680  | 0.8903 | 0.1030 | 0.2493       | 0.1467      | 0.0609   | 0.0662  |
| Alta_Foresta | 09072003 | 132602 | aot412   | 141599   | 0.0881 | 0.9419  | 0.9453 | 0.0710 | 0.3704       | 0.2997      | 0.1228   | 0.1267  |
| Alta_Foresta | 10082003 | 132026 | aot412   | 134590   | 0.0571 | 1.0694  | 0.9327 | 0.0768 | 0.3545       | 0.2782      | 0.1336   | 0.1207  |
| Alta_Foresta | 25072003 | 132315 | aot560   | 14007    | 0.0868 | 0.7021  | 0.8465 | 0.0533 | 0.1834       | 0.1376      | 0.0699   | 0.0917  |
| Alta_Foresta | 30042003 | 132600 | aot560   | 158811   | 0.1044 | 0.7403  | 0.6781 | 0.0724 | 0.2003       | 0.1296      | 0.0532   | 0.0592  |
| Alta_Foresta | 09072003 | 132602 | aot560   | 141599   | 0.0821 | 0.7742  | 0.8260 | 0.0326 | 0.2878       | 0.2657      | 0.0905   | 0.1063  |
| Alta_Foresta | 10082003 | 132026 | aot560   | 134590   | 0.0514 | 0.9633  | 0.8659 | 0.0425 | 0.2889       | 0.2465      | 0.1028   | 0.0993  |
| Alta_Foresta | 25072003 | 132315 | aot860   | 14007    | 0.0891 | 0.5043  | 0.6382 | 0.0507 | 0.1526       | 0.1258      | 0.0548   | 0.0868  |
| Alta_Foresta | 30042003 | 132600 | aot860   | 158811   | 0.1176 | 0.4336  | 0.3552 | 0.0628 | 0.1653       | 0.1100      | 0.0383   | 0.0527  |
| Alta_Foresta | 09072003 | 132602 | aot860   | 141599   | 0.1091 | 0.4243  | 0.4862 | 0.0532 | 0.2047       | 0.2255      | 0.0518   | 0.0851  |
| Alta_Foresta | 10082003 | 132026 | aot860   | 134590   | 0.0856 | 0.6760  | 0.6370 | 0.0307 | 0.2269       | 0.2089      | 0.0653   | 0.0771  |



## 10.2. BONDVILLE

| Site      | date     | hour   | variable | Nb pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|-----------|----------|--------|----------|----------|--------|---------|--------|--------|--------------|-------------|----------|---------|
| BONDVILLE | 21062003 | 155918 | alpha    | 134338   | 0.8588 | 0.0760  | 0.0062 | 0.5287 | 0.8982       | 0.5187      | 0.3845   | 0.3984  |
| BONDVILLE | 24092003 | 161333 | alpha    | 123198   | 0.5964 | -0.0010 | 0.0000 | 0.4824 | 0.5957       | 0.8062      | 0.3698   | 0.4336  |
| BONDVILLE | 20112003 | 162159 | alpha    | 29       | 1.3927 | -0.1237 | 0.0187 | 0.7471 | 1.2707       | 0.9862      | 0.5661   | 0.6256  |
| BONDVILLE | 23032003 | 162735 | alpha    | 16194    | 0.4131 | 0.0599  | 0.0092 | 0.4095 | 0.4512       | 0.6349      | 0.2435   | 0.3893  |
| BONDVILLE | 20062003 | 163016 | alpha    | 99119    | 0.7807 | 0.0690  | 0.0071 | 0.4287 | 0.8178       | 0.5370      | 0.2850   | 0.3480  |
| BONDVILLE | 22102003 | 163309 | alpha    | 817      | 0.5573 | 0.0006  | 0.0000 | 0.8733 | 0.5580       | 1.1337      | 0.3877   | 0.6574  |
| BONDVILLE | 20092003 | 163857 | alpha    | 46328    | 0.6764 | -0.0292 | 0.0014 | 0.4653 | 0.6530       | 0.8011      | 0.3367   | 0.4285  |
| BONDVILLE | 01042003 | 164427 | alpha    | 84       | 0.4685 | 0.0484  | 0.0022 | 0.4674 | 0.4929       | 0.5038      | 0.5065   | 0.4939  |
| BONDVILLE | 21062003 | 155918 | aot412   | 134338   | 0.0786 | 1.0381  | 0.9373 | 0.0915 | 0.4214       | 0.3303      | 0.2376   | 0.2216  |
| BONDVILLE | 24092003 | 161333 | aot412   | 123198   | 0.1044 | 1.1901  | 0.8988 | 0.1363 | 0.2940       | 0.1594      | 0.1407   | 0.1121  |
| BONDVILLE | 20112003 | 162159 | aot412   | 29       | 0.1247 | 0.6328  | 0.3544 | 0.1149 | 0.1417       | 0.0269      | 0.0168   | 0.0158  |
| BONDVILLE | 23032003 | 162735 | aot412   | 16194    | 0.1014 | 1.0459  | 0.8793 | 0.1175 | 0.4601       | 0.3429      | 0.1957   | 0.1754  |
| BONDVILLE | 20062003 | 163016 | aot412   | 99119    | 0.1087 | 0.8623  | 0.9182 | 0.0632 | 0.4679       | 0.4166      | 0.2413   | 0.2682  |
| BONDVILLE | 22102003 | 163309 | aot412   | 817      | 0.1617 | 0.6998  | 0.7293 | 0.1245 | 0.2537       | 0.1314      | 0.0643   | 0.0784  |
| BONDVILLE | 20092003 | 163857 | aot412   | 46328    | 0.1165 | 1.0557  | 0.9395 | 0.1273 | 0.3161       | 0.1891      | 0.1719   | 0.1578  |
| BONDVILLE | 01042003 | 164427 | aot412   | 84       | 0.1520 | 0.6555  | 0.8787 | 0.0838 | 0.3005       | 0.2265      | 0.0801   | 0.1146  |
| BONDVILLE | 21062003 | 155918 | aot560   | 134338   | 0.0515 | 0.9430  | 0.8138 | 0.0372 | 0.3135       | 0.2778      | 0.1901   | 0.1818  |
| BONDVILLE | 24092003 | 161333 | aot560   | 123198   | 0.0947 | 1.0898  | 0.7838 | 0.1065 | 0.2333       | 0.1272      | 0.1115   | 0.0906  |



| Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |  |  |  |  |
|-------|--------|------------------|----------|--|--|--|--|--|--|
| Issue | 1      | Date             | 31/03/06 |  |  |  |  |  |  |
| Rev   | 1      | Date             | 07/04/06 |  |  |  |  |  |  |
| Page  | 96     |                  |          |  |  |  |  |  |  |

| Site      | date     | hour   | variable | Nb pixel | Offset | Slope  | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|-----------|----------|--------|----------|----------|--------|--------|--------|--------|--------------|-------------|----------|---------|
| BONDVILLE | 20112003 | 162159 | aot560   | 29       | 0.0864 | 0.3209 | 0.0175 | 0.0730 | 0.0930       | 0.0206      | 0.0347   | 0.0143  |
| BONDVILLE | 23032003 | 162735 | aot560   | 16194    | 0.1536 | 0.8151 | 0.7988 | 0.1041 | 0.3905       | 0.2906      | 0.1448   | 0.1588  |
| BONDVILLE | 20062003 | 163016 | aot560   | 99119    | 0.0534 | 0.8496 | 0.8613 | 0.0320 | 0.3490       | 0.3480      | 0.1949   | 0.2129  |
| BONDVILLE | 22102003 | 163309 | aot560   | 817      | 0.1496 | 0.5791 | 0.4711 | 0.1113 | 0.2089       | 0.1025      | 0.0654   | 0.0776  |
| BONDVILLE | 20092003 | 163857 | aot560   | 46328    | 0.1053 | 0.9251 | 0.8597 | 0.0945 | 0.2451       | 0.1511      | 0.1260   | 0.1263  |
| BONDVILLE | 01042003 | 164427 | aot560   | 84       | 0.1104 | 0.6276 | 0.6992 | 0.0553 | 0.2389       | 0.2048      | 0.0884   | 0.1177  |
| BONDVILLE | 21062003 | 155918 | aot860   | 134338   | 0.0698 | 0.6759 | 0.7129 | 0.0465 | 0.2193       | 0.2212      | 0.1147   | 0.1433  |
| BONDVILLE | 24092003 | 161333 | aot860   | 123198   | 0.1132 | 0.8089 | 0.5606 | 0.0961 | 0.1894       | 0.0942      | 0.0761   | 0.0704  |
| BONDVILLE | 20112003 | 162159 | aot860   | 29       | 0.0590 | 0.1979 | 0.0062 | 0.0482 | 0.0620       | 0.0150      | 0.0333   | 0.0133  |
| BONDVILLE | 23032003 | 162735 | aot860   | 16194    | 0.1921 | 0.5397 | 0.6989 | 0.1073 | 0.3180       | 0.2333      | 0.0924   | 0.1432  |
| BONDVILLE | 20062003 | 163016 | aot860   | 99119    | 0.0749 | 0.6597 | 0.7715 | 0.0576 | 0.2553       | 0.2735      | 0.1208   | 0.1608  |
| BONDVILLE | 22102003 | 163309 | aot860   | 817      | 0.1414 | 0.4444 | 0.3344 | 0.1075 | 0.1755       | 0.0768      | 0.0589   | 0.0766  |
| BONDVILLE | 20092003 | 163857 | aot860   | 46328    | 0.1147 | 0.6244 | 0.7125 | 0.0810 | 0.1842       | 0.1114      | 0.0697   | 0.0942  |
| BONDVILLE | 01042003 | 164427 | aot860   | 84       | 0.1416 | 0.4466 | 0.4254 | 0.0781 | 0.2224       | 0.1810      | 0.0824   | 0.1203  |



## 10.3. BORDEAUX

| Site     | date     | hour   | variable | Nb pixel | Offset  | Slope  | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|----------|----------|--------|----------|----------|---------|--------|--------|--------|--------------|-------------|----------|---------|
| BORDEAUX | 19062003 | 101753 | alpha    |          | 0.0436  | 0.7396 | 0.0021 | 0.4666 | 0.7638       | 0.5527      | 0.4105   | 0.4352  |
| BORDEAUX | 11072003 | 102624 | alpha    |          | -0.0649 | 0.8765 | 0.0073 | 0.4374 | 0.8330       | 0.6713      | 0.2890   | 0.3817  |
| BORDEAUX | 02082003 | 103459 | alpha    |          | 0.0150  | 0.8095 | 0.0003 | 0.4808 | 0.8201       | 0.7017      | 0.4213   | 0.4731  |
| BORDEAUX | 25082003 | 101253 | alpha    |          | 0.0074  | 0.5437 | 0.0001 | 0.5258 | 0.5507       | 0.9427      | 0.3334   | 0.3530  |
| BORDEAUX | 15092003 | 105232 | alpha    |          | -0.0244 | 0.4637 | 0.0016 | 0.5387 | 0.4483       | 0.6305      | 0.3043   | 0.4949  |
| BORDEAUX | 19062003 | 101753 | aot412   |          | 1.0013  | 0.0995 | 0.8794 | 0.0999 | 0.3658       | 0.2660      | 0.1943   | 0.1820  |
| BORDEAUX | 11072003 | 102624 | aot412   |          | 1.0604  | 0.0995 | 0.8051 | 0.1202 | 0.4567       | 0.3368      | 0.1877   | 0.1588  |
| BORDEAUX | 02082003 | 103459 | aot412   |          | 0.8831  | 0.1401 | 0.7046 | 0.1177 | 0.3125       | 0.1953      | 0.0933   | 0.0887  |
| BORDEAUX | 25082003 | 101253 | aot412   |          | 1.0312  | 0.1238 | 0.8879 | 0.1313 | 0.3678       | 0.2366      | 0.1097   | 0.1003  |
| BORDEAUX | 15092003 | 105232 | aot412   | 27017    | 0.7974  | 0.1361 | 0.6425 | 0.1032 | 0.2696       | 0.1674      | 0.0710   | 0.0714  |
| BORDEAUX | 19062003 | 101753 | aot560   |          | 0.8218  | 0.0888 | 0.7623 | 0.0558 | 0.2773       | 0.2294      | 0.1515   | 0.1609  |
| BORDEAUX | 11072003 | 102624 | aot560   |          | 0.9890  | 0.0688 | 0.7054 | 0.0658 | 0.3422       | 0.2764      | 0.1567   | 0.1331  |
| BORDEAUX | 02082003 | 103459 | aot560   |          | 0.7943  | 0.0966 | 0.4810 | 0.0654 | 0.2258       | 0.1626      | 0.0941   | 0.0822  |
| BORDEAUX | 25082003 | 101253 | aot560   |          | 0.9440  | 0.1302 | 0.7300 | 0.1202 | 0.2999       | 0.1798      | 0.0897   | 0.0812  |
| BORDEAUX | 15092003 | 105232 | aot560   | 27017    | 0.5575  | 0.1423 | 0.3865 | 0.0845 | 0.2224       | 0.1437      | 0.0624   | 0.0696  |
| BORDEAUX | 19062003 | 101753 | aot860   |          | 0.5602  | 0.1015 | 0.6382 | 0.0649 | 0.2076       | 0.1894      | 0.0992   | 0.1415  |
| BORDEAUX | 11072003 | 102624 | aot860   |          | 0.6480  | 0.1131 | 0.5039 | 0.0544 | 0.2504       | 0.2118      | 0.0994   | 0.1089  |
| BORDEAUX | 02082003 | 103459 | aot860   |          | 0.5652  | 0.1090 | 0.3004 | 0.0627 | 0.1815       | 0.1283      | 0.0785   | 0.0761  |
| BORDEAUX | 25082003 | 101253 | aot860   |          | 0.6601  | 0.1642 | 0.4469 | 0.1241 | 0.2456       | 0.1233      | 0.0619   | 0.0627  |
| BORDEAUX | 15092003 | 105232 | aot860   | 27017    | 0.2538  | 0.1647 | 0.1370 | 0.0921 | 0.1948       | 0.1186      | 0.0476   | 0.0693  |

© Noveltis 2006



## 10.4. GSFC

| Site | date     | hour   | variable | Nb pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|------|----------|--------|----------|----------|--------|---------|--------|--------|--------------|-------------|----------|---------|
| GSFC | 24032003 | 155531 | alpha    | 3135     | 0.3686 | 0.2357  | 0.3235 | 0.4543 | 0.5714       | 0.8602      | 0.1901   | 0.4588  |
| GSFC | 25032003 | 152423 | alpha    | 8115     | 0.3545 | 0.0652  | 0.0115 | 0.5847 | 0.4026       | 0.7378      | 0.3112   | 0.5126  |
| GSFC | 21112003 | 154959 | alpha    | 773      | 0.2997 | 0.0334  | 0.0073 | 0.8676 | 0.3338       | 1.0202      | 0.2156   | 0.5495  |
| GSFC | 30102003 | 154125 | alpha    | 391      | 0.4732 | -0.0177 | 0.0026 | 0.8612 | 0.4533       | 1.1227      | 0.1835   | 0.5332  |
| GSFC | 24032003 | 155531 | aot412   | 3135     | 0.2867 | 0.4491  | 0.5804 | 0.1230 | 0.4266       | 0.3115      | 0.0464   | 0.0786  |
| GSFC | 25032003 | 152423 | aot412   | 8115     | 0.2021 | 0.4854  | 0.5569 | 0.0962 | 0.3049       | 0.2118      | 0.0302   | 0.0465  |
| GSFC | 21112003 | 154959 | aot412   | 773      | 0.0971 | 0.8517  | 0.5073 | 0.0902 | 0.1372       | 0.0470      | 0.0235   | 0.0196  |
| GSFC | 30102003 | 154125 | aot412   | 391      | 0.1242 | 0.7232  | 0.7602 | 0.1080 | 0.1683       | 0.0609      | 0.0351   | 0.0423  |
| GSFC | 24032003 | 155531 | aot560   | 3135     | 0.2543 | 0.4121  | 0.5612 | 0.1202 | 0.3568       | 0.2489      | 0.0494   | 0.0899  |
| GSFC | 25032003 | 152423 | aot560   | 8115     | 0.2053 | 0.3336  | 0.2156 | 0.0967 | 0.2639       | 0.1756      | 0.0426   | 0.0593  |
| GSFC | 21112003 | 154959 | aot560   | 773      | 0.1043 | 0.5881  | 0.1914 | 0.0899 | 0.1253       | 0.0357      | 0.0237   | 0.0176  |
| GSFC | 30102003 | 154125 | aot560   | 391      | 0.1242 | 0.5201  | 0.5178 | 0.1040 | 0.1481       | 0.0459      | 0.0290   | 0.0402  |
| GSFC | 24032003 | 155531 | aot860   | 3135     | 0.2037 | 0.4277  | 0.5900 | 0.1120 | 0.2830       | 0.1855      | 0.0536   | 0.0963  |
| GSFC | 25032003 | 152423 | aot860   | 8115     | 0.1810 | 0.3706  | 0.2222 | 0.1034 | 0.2324       | 0.1389      | 0.0549   | 0.0699  |
| GSFC | 21112003 | 154959 | aot860   | 773      | 0.1028 | 0.1875  | 0.0225 | 0.0834 | 0.1076       | 0.0253      | 0.0210   | 0.0168  |
| GSFC | 30102003 | 154125 | aot860   | 391      | 0.1090 | 0.3555  | 0.2925 | 0.0916 | 0.1204       | 0.0322      | 0.0251   | 0.0382  |



## 10.5. HOWLAND

| Site    | date     | hour   | variable | Nb     | Offset | Slope   | R2     | rmse   | Mean   | Mean   | Sdt    | Sdt    |
|---------|----------|--------|----------|--------|--------|---------|--------|--------|--------|--------|--------|--------|
|         |          |        |          | pixel  |        |         |        |        | baer   | ddv    | baer   | ddv    |
| HOWLAND | 16062003 | 151327 | alpha    | 113048 | 0.7799 | -0.0830 | 0.0053 | 0.4554 | 0.7272 | 0.6342 | 0.4675 | 0.4116 |
| HOWLAND | 16062003 | 151327 | aot412   | 113048 | 0.0976 | 0.8832  | 0.9394 | 0.0725 | 0.3044 | 0.2341 | 0.1394 | 0.1529 |
| HOWLAND | 16062003 | 151327 | aot560   | 113048 | 0.0744 | 0.8228  | 0.7852 | 0.0460 | 0.2350 | 0.1952 | 0.1209 | 0.1302 |
| HOWLAND | 16062003 | 151327 | aot860   | 113048 | 0.0873 | 0.6584  | 0.6040 | 0.0507 | 0.1883 | 0.1534 | 0.0915 | 0.1080 |

## 10.6. ISPRA

| Site  | date     | hour   | variable | Nb pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|-------|----------|--------|----------|----------|--------|---------|--------|--------|--------------|-------------|----------|---------|
| ISPRA | 04082003 | 093123 | alpha    | 208437   | 0.6930 | 0.0827  | 0.0117 | 0.3314 | 0.7619       | 0.8337      | 0.2695   | 0.3527  |
| ISPRA | 23082003 | 093507 | alpha    | 87527    | 0.7397 | 0.1098  | 0.0151 | 0.2815 | 0.8350       | 0.8686      | 0.2808   | 0.3139  |
| ISPRA | 22072003 | 094006 | alpha    | 145500   | 0.7398 | -0.0264 | 0.0012 | 0.3809 | 0.7228       | 0.6430      | 0.2745   | 0.3629  |
| ISPRA | 06072003 | 094331 | alpha    | 80196    | 0.6529 | 0.1219  | 0.0206 | 0.3382 | 0.7308       | 0.6392      | 0.3152   | 0.3708  |
| ISPRA | 10082003 | 094352 | alpha    | 47796    | 0.6134 | 0.0945  | 0.0127 | 0.3144 | 0.6879       | 0.7881      | 0.2757   | 0.3291  |
| ISPRA | 20062003 | 094622 | alpha    | 66205    | 0.7927 | 0.0490  | 0.0027 | 0.4637 | 0.8189       | 0.5340      | 0.3634   | 0.3847  |
| ISPRA | 25072003 | 094625 | alpha    | 59688    | 0.6979 | 0.0586  | 0.0047 | 0.3694 | 0.7365       | 0.6577      | 0.3264   | 0.3834  |
| ISPRA | 13082003 | 094931 | alpha    | 53482    | 0.7393 | 0.0294  | 0.0015 | 0.3161 | 0.7635       | 0.8244      | 0.2427   | 0.3196  |
| ISPRA | 28072003 | 095206 | alpha    | 68159    | 0.7540 | 0.0697  | 0.0076 | 0.3355 | 0.7986       | 0.6405      | 0.2545   | 0.3181  |
| ISPRA | 04082003 | 093123 | aot412   | 208437   | 0.1366 | 0.9861  | 0.8514 | 0.1316 | 0.4927       | 0.3611      | 0.1647   | 0.1541  |



| Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |  |  |  |  |
|-------|--------|------------------|----------|--|--|--|--|--|--|
| Issue | 1      | 1 Date 31/03/06  |          |  |  |  |  |  |  |
| Rev   | 1      | Date             | 07/04/06 |  |  |  |  |  |  |
| Page  | 100    | 100              |          |  |  |  |  |  |  |

| Site  | date     | hour   | variable | Nb pixel | Offset | Slope  | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|-------|----------|--------|----------|----------|--------|--------|--------|--------|--------------|-------------|----------|---------|
| ISPRA | 23082003 | 093507 | aot412   | 87527    | 0.0581 | 1.3184 | 0.8920 | 0.1900 | 0.5699       | 0.3882      | 0.2434   | 0.1744  |
| ISPRA | 22072003 | 094006 | aot412   | 145500   | 0.1435 | 0.8948 | 0.8836 | 0.1096 | 0.4426       | 0.3342      | 0.1465   | 0.1539  |
| ISPRA | 06072003 | 094331 | aot412   | 80196    | 0.0917 | 1.0515 | 0.8669 | 0.1097 | 0.4530       | 0.3436      | 0.1869   | 0.1655  |
| ISPRA | 10082003 | 094352 | aot412   | 47796    | 0.0591 | 1.3106 | 0.8080 | 0.1723 | 0.5168       | 0.3492      | 0.1888   | 0.1295  |
| ISPRA | 20062003 | 094622 | aot412   | 66205    | 0.1071 | 0.9917 | 0.8765 | 0.1048 | 0.3824       | 0.2776      | 0.1628   | 0.1537  |
| ISPRA | 25072003 | 094625 | aot412   | 59688    | 0.0943 | 1.1381 | 0.9056 | 0.1407 | 0.4575       | 0.3192      | 0.2220   | 0.1857  |
| ISPRA | 13082003 | 094931 | aot412   | 53482    | 0.1634 | 0.9664 | 0.7663 | 0.1515 | 0.5070       | 0.3555      | 0.1281   | 0.1160  |
| ISPRA | 28072003 | 095206 | aot412   | 68159    | 0.1045 | 1.0537 | 0.8850 | 0.1264 | 0.5266       | 0.4006      | 0.1885   | 0.1683  |
| ISPRA | 04082003 | 093123 | aot560   | 208437   | 0.1614 | 0.7888 | 0.7011 | 0.1050 | 0.3860       | 0.2847      | 0.1226   | 0.1302  |
| ISPRA | 23082003 | 093507 | aot560   | 87527    | 0.1067 | 1.0979 | 0.7769 | 0.1368 | 0.4364       | 0.3003      | 0.1714   | 0.1376  |
| ISPRA | 22072003 | 094006 | aot560   | 145500   | 0.1243 | 0.7722 | 0.7144 | 0.0680 | 0.3397       | 0.2789      | 0.1229   | 0.1345  |
| ISPRA | 06072003 | 094331 | aot560   | 80196    | 0.0950 | 0.8888 | 0.7040 | 0.0652 | 0.3486       | 0.2853      | 0.1496   | 0.1412  |
| ISPRA | 10082003 | 094352 | aot560   | 47796    | 0.1380 | 0.9773 | 0.6480 | 0.1318 | 0.4092       | 0.2775      | 0.1304   | 0.1074  |
| ISPRA | 20062003 | 094622 | aot560   | 66205    | 0.0748 | 0.8645 | 0.7340 | 0.0463 | 0.2811       | 0.2386      | 0.1366   | 0.1353  |
| ISPRA | 25072003 | 094625 | aot560   | 59688    | 0.0754 | 1.0345 | 0.7797 | 0.0846 | 0.3467       | 0.2623      | 0.1767   | 0.1508  |
| ISPRA | 13082003 | 094931 | aot560   | 53482    | 0.1923 | 0.7304 | 0.6084 | 0.1198 | 0.3968       | 0.2801      | 0.0933   | 0.0996  |
| ISPRA | 28072003 | 095206 | aot560   | 68159    | 0.1025 | 0.9064 | 0.7352 | 0.0728 | 0.4022       | 0.3306      | 0.1486   | 0.1406  |
| ISPRA | 04082003 | 093123 | aot860   | 208437   | 0.1791 | 0.4716 | 0.4762 | 0.0898 | 0.2760       | 0.2055      | 0.0720   | 0.1053  |
| ISPRA | 23082003 | 093507 | aot860   | 87527    | 0.1638 | 0.6317 | 0.5277 | 0.0941 | 0.2968       | 0.2105      | 0.0887   | 0.1020  |



|                                                       | Ref NOV-3341-NT-3284 |     |      |          |  |  |
|-------------------------------------------------------|----------------------|-----|------|----------|--|--|
| Papart on the validation of MERIS IRAER land products | Issue                | 1   | Date | 31/03/06 |  |  |
| Report on the validation of MERIS IBAER land products | Rev                  | 1   | Date | 07/04/06 |  |  |
|                                                       | Page                 | 101 |      |          |  |  |

| Site  | date     | hour   | variable | Nb pixel | Offset | Slope  | R2     | rmse   | Mean   | Mean   | Sdt baer | Sdt ddv |
|-------|----------|--------|----------|----------|--------|--------|--------|--------|--------|--------|----------|---------|
|       |          |        |          |          |        |        |        |        | baer   | ddv    |          |         |
| ISPRA | 22072003 | 094006 | aot860   | 145500   | 0.1636 | 0.4380 | 0.4103 | 0.0767 | 0.2593 | 0.2186 | 0.0791   | 0.1157  |
| ISPRA | 06072003 | 094331 | aot860   | 80196    | 0.1368 | 0.5690 | 0.5047 | 0.0656 | 0.2634 | 0.2224 | 0.0953   | 0.1190  |
| ISPRA | 10082003 | 094352 | aot860   | 47796    | 0.2066 | 0.4743 | 0.3373 | 0.1103 | 0.3027 | 0.2025 | 0.0717   | 0.0878  |
| ISPRA | 20062003 | 094622 | aot860   | 66205    | 0.1005 | 0.5822 | 0.5356 | 0.0529 | 0.2143 | 0.1955 | 0.0943   | 0.1185  |
| ISPRA | 25072003 | 094625 | aot860   | 59688    | 0.1265 | 0.6780 | 0.5611 | 0.0723 | 0.2629 | 0.2013 | 0.1061   | 0.1172  |
| ISPRA | 13082003 | 094931 | aot860   | 53482    | 0.2055 | 0.3990 | 0.3140 | 0.0982 | 0.2859 | 0.2017 | 0.0598   | 0.0840  |
| ISPRA | 28072003 | 095206 | aot860   | 68159    | 0.1529 | 0.5300 | 0.4719 | 0.0635 | 0.2878 | 0.2544 | 0.0886   | 0.1149  |

## 10.7. LAMPEDUSA

| Site      | date     | hour   | variable | Nb    | Offset | Slope   | R2     | rmse   | Mean   | Mean   | Sdt    | Sdt ddv |
|-----------|----------|--------|----------|-------|--------|---------|--------|--------|--------|--------|--------|---------|
|           |          |        |          | pixel |        |         |        |        | baer   | ddv    | baer   |         |
| LAMPEDUSA | 11062003 | 093044 | alpha    | 8540  | 0.7994 | 0.0134  | 0.0003 | 0.3872 | 0.8083 | 0.6655 | 0.2704 | 0.3648  |
| LAMPEDUSA | 22072003 | 094215 | alpha    | 2673  | 0.9029 | -0.0602 | 0.0267 | 0.5502 | 0.8584 | 0.7379 | 0.1867 | 0.5064  |
| LAMPEDUSA | 01062003 | 094456 | alpha    | 6239  | 0.8469 | 0.0305  | 0.0017 | 0.3663 | 0.8694 | 0.7365 | 0.2599 | 0.3521  |
| LAMPEDUSA | 11062003 | 093044 | aot412   | 8540  | 0.1167 | 0.9878  | 0.8634 | 0.1127 | 0.4449 | 0.3322 | 0.1327 | 0.1248  |
| LAMPEDUSA | 22072003 | 094215 | aot412   | 2673  | 0.1768 | 0.9062  | 0.7698 | 0.1525 | 0.4152 | 0.2630 | 0.1176 | 0.1138  |
| LAMPEDUSA | 01062003 | 094456 | aot412   | 6239  | 0.0842 | 1.1145  | 0.8554 | 0.1329 | 0.5469 | 0.4151 | 0.1809 | 0.1501  |
| LAMPEDUSA | 11062003 | 093044 | aot560   | 8540  | 0.0999 | 0.8393  | 0.6577 | 0.0586 | 0.3298 | 0.2738 | 0.1131 | 0.1093  |



| Ref   | NOV-33          | NOV-3341-NT-3284 |          |  |  |  |  |  |  |
|-------|-----------------|------------------|----------|--|--|--|--|--|--|
| Issue | 1 Date 31/03/06 |                  |          |  |  |  |  |  |  |
| Rev   | 1               | Date             | 07/04/06 |  |  |  |  |  |  |
| Page  | 102             | 02               |          |  |  |  |  |  |  |

| LAMPEDUSA | 22072003 | 094215 | aot560 | 2673 | 0.1753 | 0.6267 | 0.4976 | 0.1021 | 0.3115 | 0.2174 | 0.0945 | 0.1064 |
|-----------|----------|--------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|
| LAMPEDUSA | 01062003 | 094456 | aot560 | 6239 | 0.1108 | 0.9056 | 0.6634 | 0.0800 | 0.4160 | 0.3370 | 0.1470 | 0.1322 |
| LAMPEDUSA | 11062003 | 093044 | aot860 | 8540 | 0.1456 | 0.4723 | 0.4189 | 0.0618 | 0.2455 | 0.2115 | 0.0713 | 0.0977 |
| LAMPEDUSA | 22072003 | 094215 | aot860 | 2673 | 0.1735 | 0.2742 | 0.2083 | 0.0885 | 0.2202 | 0.1705 | 0.0606 | 0.1009 |
| LAMPEDUSA | 01062003 | 094456 | aot860 | 6239 | 0.1590 | 0.5065 | 0.4624 | 0.0663 | 0.2876 | 0.2540 | 0.0863 | 0.1158 |

## 10.8. LILLE

| Site  | date     | hour   | variable | Nb pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|-------|----------|--------|----------|----------|--------|---------|--------|--------|--------------|-------------|----------|---------|
| LILLE | 16062003 | 101043 | alpha    | 201671   | 0.4985 | 0.3357  | 0.1240 | 0.2573 | 0.6669       | 0.5014      | 0.2829   | 0.2967  |
| LILLE | 22032003 | 101214 | alpha    | 1188     | 0.3004 | 0.1857  | 0.0899 | 0.3431 | 0.3871       | 0.4670      | 0.2539   | 0.4099  |
| LILLE | 22032003 | 101236 | alpha    | 1986     | 0.3030 | 0.1322  | 0.0667 | 0.4147 | 0.3701       | 0.5073      | 0.2310   | 0.4511  |
| LILLE | 14072003 | 102954 | alpha    | 49870    | 0.6846 | -0.0295 | 0.0010 | 0.4835 | 0.6682       | 0.5540      | 0.4326   | 0.4563  |
| LILLE | 16062003 | 101043 | aot412   | 201671   | 0.0421 | 1.1135  | 0.8421 | 0.0934 | 0.5240       | 0.4327      | 0.2157   | 0.1778  |
| LILLE | 22032003 | 101214 | aot412   | 1188     | 0.2010 | 0.6433  | 0.5651 | 0.0727 | 0.4624       | 0.4062      | 0.1108   | 0.1295  |
| LILLE | 22032003 | 101236 | aot412   | 1986     | 0.2150 | 0.6007  | 0.6057 | 0.0785 | 0.4482       | 0.3882      | 0.0978   | 0.1267  |
| LILLE | 14072003 | 102954 | aot412   | 49870    | 0.1220 | 0.8830  | 0.9207 | 0.0953 | 0.3338       | 0.2400      | 0.1289   | 0.1401  |
| LILLE | 16062003 | 101043 | aot560   | 201671   | 0.0440 | 0.9804  | 0.7398 | 0.0368 | 0.4076       | 0.3709      | 0.1709   | 0.1499  |
| LILLE | 22032003 | 101214 | aot560   | 1188     | 0.2327 | 0.4767  | 0.5006 | 0.0851 | 0.4059       | 0.3632      | 0.0948   | 0.1407  |
| LILLE | 22032003 | 101236 | aot560   | 1986     | 0.2416 | 0.4482  | 0.5455 | 0.0921 | 0.3964       | 0.3455      | 0.0844   | 0.1391  |



| Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |  |  |  |  |
|-------|--------|------------------|----------|--|--|--|--|--|--|
| Issue | 1      | Date             | 31/03/06 |  |  |  |  |  |  |
| Rev   | 1      | Date             | 07/04/06 |  |  |  |  |  |  |
| Page  | 103    |                  |          |  |  |  |  |  |  |

| LILLE | 14072003 | 102954 | aot560 | 49870  | 0.0816 | 0.8468 | 0.7339 | 0.0532 | 0.2583 | 0.2087 | 0.1232 | 0.1246 |
|-------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| LILLE | 16062003 | 101043 | aot860 | 201671 | 0.1178 | 0.6552 | 0.6083 | 0.0454 | 0.3150 | 0.3009 | 0.1053 | 0.1253 |
| LILLE | 22032003 | 101214 | aot860 | 1188   | 0.2436 | 0.3323 | 0.4958 | 0.1081 | 0.3483 | 0.3152 | 0.0727 | 0.1541 |
| LILLE | 22032003 | 101236 | aot860 | 1986   | 0.2454 | 0.3244 | 0.5464 | 0.1116 | 0.3421 | 0.2984 | 0.0667 | 0.1519 |
| LILLE | 14072003 | 102954 | aot860 | 49870  | 0.0980 | 0.6725 | 0.5138 | 0.0545 | 0.2151 | 0.1741 | 0.1028 | 0.1095 |

## 10.9. MARICOPA

| Site     | date     | hour   | variable | Nb<br>pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt<br>baer | Sdt ddv |
|----------|----------|--------|----------|-------------|--------|---------|--------|--------|--------------|-------------|-------------|---------|
| MARICOPA | 28092003 | 172931 | alpha    | 546         | 0.8132 | 0.2442  | 0.0299 | 0.4821 | 0.9649       | 0.6212      | 0.6326      | 0.4478  |
| MARICOPA | 28092003 | 172948 | alpha    | 943         | 0.8316 | -0.0779 | 0.0039 | 0.5386 | 0.7682       | 0.8144      | 0.6179      | 0.4981  |
| MARICOPA | 21112003 | 173142 | alpha    | 76          | 0.9624 | -0.1159 | 0.0064 | 0.5803 | 0.8552       | 0.9256      | 0.7504      | 0.5197  |
| MARICOPA | 12092003 | 173149 | alpha    | 569         | 0.8926 | 0.0034  | 0.0000 | 0.5472 | 0.8947       | 0.6303      | 0.4044      | 0.4812  |
| MARICOPA | 17102003 | 173212 | alpha    | 21          | 1.0919 | 0.1872  | 0.0213 | 0.6013 | 1.2267       | 0.7201      | 0.5242      | 0.4084  |
| MARICOPA | 12092003 | 173225 | alpha    | 576         | 0.8901 | 0.0206  | 0.0007 | 0.5221 | 0.9046       | 0.7023      | 0.3883      | 0.4919  |
| MARICOPA | 29012003 | 173427 | alpha    | 317         | 0.3410 | 0.2684  | 0.0733 | 0.4078 | 0.5347       | 0.7213      | 0.4922      | 0.4964  |
| MARICOPA | 05112003 | 173431 | alpha    | 36          | 0.6147 | -0.0039 | 0.0000 | 0.6292 | 0.6113       | 0.8950      | 0.5678      | 0.5673  |
| MARICOPA | 07072003 | 173722 | alpha    | 495         | 0.5506 | 0.2660  | 0.0712 | 0.4271 | 0.7838       | 0.8767      | 0.5667      | 0.5685  |
| MARICOPA | 15092003 | 173728 | alpha    | 942         | 0.6785 | 0.1918  | 0.0187 | 0.4392 | 0.7815       | 0.5367      | 0.6337      | 0.4514  |
| MARICOPA | 20102003 | 173800 | alpha    | 22          | 1.0839 | 0.0528  | 0.0021 | 0.6172 | 1.1219       | 0.7197      | 0.5893      | 0.5059  |
| MARICOPA | 15092003 | 173807 | alpha    | 609         | 0.9375 | 0.0025  | 0.0000 | 0.5534 | 0.9393       | 0.7334      | 0.5762      | 0.5153  |



|                                                       | Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |  |
|-------------------------------------------------------|-------|--------|------------------|----------|--|--|--|
| Depart on the validation of MEDIC IDAED land products | Issue | 1      | Date             | 31/03/06 |  |  |  |
| Report on the validation of MERIS IBAER land products | Rev   | 1      | Date             | 07/04/06 |  |  |  |
|                                                       | Page  | 104    |                  |          |  |  |  |
|                                                       |       |        |                  |          |  |  |  |

| Site     | date     | hour   | variable | Nb<br>pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt<br>baer | Sdt ddv |
|----------|----------|--------|----------|-------------|--------|---------|--------|--------|--------------|-------------|-------------|---------|
| MARICOPA | 21062003 | 174047 | alpha    | 24          | 1.0045 | -0.0948 | 0.0100 | 0.7416 | 0.9260       | 0.8278      | 0.6516      | 0.6858  |
| MARICOPA | 16012003 | 174256 | alpha    | 456         | 0.3703 | 0.0479  | 0.0034 | 0.3232 | 0.3937       | 0.4884      | 0.2654      | 0.3249  |
| MARICOPA | 10072003 | 174329 | alpha    | 75          | 0.5712 | 0.1589  | 0.0569 | 0.5198 | 0.7284       | 0.9892      | 0.3584      | 0.5381  |
| MARICOPA | 23102003 | 174331 | alpha    | 5           | 0.2322 | 0.0634  | 0.1643 | 0.7875 | 0.2912       | 0.9298      | 0.0860      | 0.5500  |
| MARICOPA | 27112003 | 174332 | alpha    | 28          | 0.1493 | 0.1722  | 0.1511 | 0.6179 | 0.2669       | 0.6831      | 0.2488      | 0.5618  |
| MARICOPA | 18092003 | 174337 | alpha    | 190         | 0.9966 | -0.1212 | 0.0088 | 0.6144 | 0.9264       | 0.5784      | 0.5844      | 0.4527  |
| MARICOPA | 04022003 | 174545 | alpha    | 77          | 0.5079 | -0.1418 | 0.0590 | 0.6358 | 0.4268       | 0.5719      | 0.3184      | 0.5457  |
| MARICOPA | 11032003 | 174615 | alpha    | 2925        | 0.9994 | -0.0934 | 0.0050 | 0.6167 | 0.9477       | 0.5534      | 0.5719      | 0.4338  |
| MARICOPA | 19012003 | 174836 | alpha    | 349         | 0.4664 | 0.0740  | 0.0066 | 0.4091 | 0.5082       | 0.5646      | 0.3976      | 0.4382  |
| MARICOPA | 30032003 | 174838 | alpha    | 829         | 1.0810 | 0.1129  | 0.0054 | 0.7339 | 1.1366       | 0.4926      | 0.6076      | 0.3970  |
| MARICOPA | 13072003 | 174843 | alpha    | 1080        | 0.8234 | 0.0850  | 0.0154 | 0.4212 | 0.9053       | 0.9640      | 0.3120      | 0.4560  |
| MARICOPA | 13072003 | 174911 | alpha    | 197         | 0.7050 | 0.1580  | 0.0428 | 0.3607 | 0.8482       | 0.9063      | 0.3237      | 0.4239  |
| MARICOPA | 21092003 | 174916 | alpha    | 65          | 0.7114 | 0.0103  | 0.0001 | 0.5379 | 0.7182       | 0.6605      | 0.5195      | 0.5446  |
| MARICOPA | 30032003 | 174917 | alpha    | 1326        | 1.0854 | -0.0072 | 0.0000 | 0.6977 | 1.0814       | 0.5526      | 0.6390      | 0.4519  |
| MARICOPA | 26102003 | 174920 | alpha    | 31          | 0.6179 | 0.2146  | 0.0753 | 0.5263 | 0.8960       | 1.2957      | 0.3466      | 0.4432  |
| MARICOPA | 10052003 | 180035 | alpha    | 6010        | 0.6525 | -0.0179 | 0.0001 | 0.3553 | 0.6427       | 0.5507      | 0.5484      | 0.3372  |
| MARICOPA | 28092003 | 172931 | aot412   | 546         | 0.1635 | 1.5189  | 0.9866 | 0.2385 | 0.3635       | 0.1317      | 0.1655      | 0.1082  |
| MARICOPA | 28092003 | 172948 | aot412   | 943         | 0.1102 | 1.4788  | 0.7016 | 0.1537 | 0.2387       | 0.0869      | 0.0903      | 0.0512  |
| MARICOPA | 21112003 | 173142 | aot412   | 76          | 0.1935 | 1.1200  | 0.8728 | 0.2105 | 0.3494       | 0.1392      | 0.1059      | 0.0883  |



| Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |  |  |  |  |
|-------|--------|------------------|----------|--|--|--|--|--|--|
| Issue | 1      | Date             | 31/03/06 |  |  |  |  |  |  |
| Rev   | 1      | Date             | 07/04/06 |  |  |  |  |  |  |
| Page  | 105    |                  |          |  |  |  |  |  |  |

| Site     | date     | hour   | variable | Nb<br>pixel | Offset | Slope  | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt<br>baer | Sdt ddv |
|----------|----------|--------|----------|-------------|--------|--------|--------|--------|--------------|-------------|-------------|---------|
| MARICOPA | 12092003 | 173149 | aot412   | 569         | 0.1431 | 1.8384 | 0.8175 | 0.1983 | 0.2600       | 0.0636      | 0.0663      | 0.0326  |
| MARICOPA | 17102003 | 173212 | aot412   | 21          | 0.2204 | 0.5063 | 0.6444 | 0.1858 | 0.2574       | 0.0731      | 0.0306      | 0.0485  |
| MARICOPA | 12092003 | 173225 | aot412   | 576         | 0.1953 | 0.8145 | 0.7180 | 0.1824 | 0.2526       | 0.0703      | 0.0301      | 0.0313  |
| MARICOPA | 29012003 | 173427 | aot412   | 317         | 0.2202 | 0.9334 | 0.8023 | 0.2047 | 0.4410       | 0.2365      | 0.1374      | 0.1319  |
| MARICOPA | 05112003 | 173431 | aot412   | 36          | 0.2340 | 0.9173 | 0.8830 | 0.2177 | 0.4194       | 0.2021      | 0.1536      | 0.1573  |
| MARICOPA | 07072003 | 173722 | aot412   | 495         | 0.2596 | 1.0783 | 0.6857 | 0.2717 | 0.4242       | 0.1527      | 0.1554      | 0.1193  |
| MARICOPA | 15092003 | 173728 | aot412   | 942         | 0.1698 | 1.5281 | 0.9052 | 0.2217 | 0.3146       | 0.0948      | 0.0865      | 0.0538  |
| MARICOPA | 20102003 | 173800 | aot412   | 22          | 0.1499 | 1.3455 | 0.8365 | 0.1960 | 0.3185       | 0.1253      | 0.1455      | 0.0989  |
| MARICOPA | 15092003 | 173807 | aot412   | 609         | 0.2035 | 0.8518 | 0.5884 | 0.1917 | 0.2715       | 0.0798      | 0.0363      | 0.0327  |
| MARICOPA | 21062003 | 174047 | aot412   | 24          | 0.3045 | 0.3441 | 0.3988 | 0.2191 | 0.3547       | 0.1459      | 0.0565      | 0.1037  |
| MARICOPA | 16012003 | 174256 | aot412   | 456         | 0.1877 | 1.0498 | 0.8705 | 0.2082 | 0.6168       | 0.4088      | 0.1879      | 0.1670  |
| MARICOPA | 10072003 | 174329 | aot412   | 75          | 0.1728 | 1.6284 | 0.7928 | 0.3489 | 0.5867       | 0.2542      | 0.3094      | 0.1692  |
| MARICOPA | 23102003 | 174331 | aot412   | 5           | 0.4851 | 0.1533 | 0.1312 | 0.2704 | 0.5252       | 0.2615      | 0.0335      | 0.0792  |
| MARICOPA | 27112003 | 174332 | aot412   | 28          | 0.2817 | 0.6055 | 0.7498 | 0.1815 | 0.4420       | 0.2649      | 0.0714      | 0.1021  |
| MARICOPA | 18092003 | 174337 | aot412   | 190         | 0.1969 | 0.8475 | 0.6696 | 0.1867 | 0.2540       | 0.0674      | 0.0285      | 0.0276  |
| MARICOPA | 04022003 | 174545 | aot412   | 77          | 0.3272 | 0.8903 | 0.6351 | 0.2857 | 0.6687       | 0.3836      | 0.1813      | 0.1623  |
| MARICOPA | 11032003 | 174615 | aot412   | 2925        | 0.1718 | 0.8656 | 0.7749 | 0.1459 | 0.3400       | 0.1944      | 0.0627      | 0.0638  |
| MARICOPA | 19012003 | 174836 | aot412   | 349         | 0.1272 | 1.2312 | 0.9439 | 0.2150 | 0.5693       | 0.3591      | 0.2475      | 0.1953  |
| MARICOPA | 30032003 | 174838 | aot412   | 829         | 0.1250 | 1.0995 | 0.8096 | 0.1391 | 0.2794       | 0.1404      | 0.0662      | 0.0542  |



| Report on the validation | of MERIS IBAER land products |
|--------------------------|------------------------------|
|                          |                              |

| Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |  |  |  |  |
|-------|--------|------------------|----------|--|--|--|--|--|--|
| Issue | 1      | Date             | 31/03/06 |  |  |  |  |  |  |
| Rev   | 1      | Date             | 07/04/06 |  |  |  |  |  |  |
| Page  | 106    |                  |          |  |  |  |  |  |  |

| Site     | date     | hour   | variable | Nb<br>pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt<br>baer | Sdt ddv |
|----------|----------|--------|----------|-------------|--------|---------|--------|--------|--------------|-------------|-------------|---------|
| MARICOPA | 13072003 | 174843 | aot412   | 1080        | 0.2005 | 1.6384  | 0.6886 | 0.4214 | 0.7489       | 0.3348      | 0.2409      | 0.1220  |
| MARICOPA | 13072003 | 174911 | aot412   | 197         | 0.1528 | 1.6483  | 0.7498 | 0.4088 | 0.7690       | 0.3738      | 0.3078      | 0.1617  |
| MARICOPA | 21092003 | 174916 | aot412   | 65          | 0.2185 | 0.7236  | 0.5998 | 0.1923 | 0.2879       | 0.0960      | 0.0380      | 0.0407  |
| MARICOPA | 30032003 | 174917 | aot412   | 1326        | 0.1272 | 1.0760  | 0.7801 | 0.1373 | 0.2694       | 0.1322      | 0.0589      | 0.0484  |
| MARICOPA | 26102003 | 174920 | aot412   | 31          | 0.1127 | 1.8753  | 0.9217 | 0.4210 | 0.7276       | 0.3279      | 0.2998      | 0.1535  |
| MARICOPA | 10052003 | 180035 | aot412   | 6010        | 0.0874 | 1.0368  | 0.8993 | 0.0963 | 0.3351       | 0.2389      | 0.1178      | 0.1078  |
| MARICOPA | 28092003 | 172931 | aot560   | 546         | 0.0737 | 1.7330  | 0.8400 | 0.1665 | 0.2626       | 0.1090      | 0.1659      | 0.0877  |
| MARICOPA | 28092003 | 172948 | aot560   | 943         | 0.1025 | 1.0955  | 0.3978 | 0.1091 | 0.1780       | 0.0689      | 0.0710      | 0.0409  |
| MARICOPA | 21112003 | 173142 | aot560   | 76          | 0.1276 | 1.2810  | 0.6228 | 0.1604 | 0.2694       | 0.1107      | 0.1364      | 0.0840  |
| MARICOPA | 12092003 | 173149 | aot560   | 569         | 0.1156 | 1.5328  | 0.4198 | 0.1444 | 0.1967       | 0.0529      | 0.0595      | 0.0252  |
| MARICOPA | 17102003 | 173212 | aot560   | 21          | 0.1840 | -0.0788 | 0.0049 | 0.1275 | 0.1791       | 0.0612      | 0.0517      | 0.0459  |
| MARICOPA | 12092003 | 173225 | aot560   | 576         | 0.1578 | 0.5177  | 0.1167 | 0.1309 | 0.1872       | 0.0568      | 0.0358      | 0.0236  |
| MARICOPA | 29012003 | 173427 | aot560   | 317         | 0.1581 | 1.0142  | 0.6410 | 0.1610 | 0.3626       | 0.2017      | 0.1638      | 0.1293  |
| MARICOPA | 05112003 | 173431 | aot560   | 36          | 0.2172 | 0.7765  | 0.5695 | 0.1830 | 0.3480       | 0.1684      | 0.1661      | 0.1614  |
| MARICOPA | 07072003 | 173722 | aot560   | 495         | 0.2261 | 0.7347  | 0.4049 | 0.1961 | 0.3154       | 0.1215      | 0.1272      | 0.1101  |
| MARICOPA | 15092003 | 173728 | aot560   | 942         | 0.1189 | 1.9618  | 0.3079 | 0.2045 | 0.2811       | 0.0827      | 0.1813      | 0.0513  |
| MARICOPA | 20102003 | 173800 | aot560   | 22          | 0.0651 | 1.5819  | 0.6904 | 0.1328 | 0.2274       | 0.1026      | 0.1523      | 0.0800  |
| MARICOPA | 15092003 | 173807 | aot560   | 609         | 0.0979 | 2.0665  | 0.1409 | 0.1691 | 0.2310       | 0.0644      | 0.1509      | 0.0274  |
| MARICOPA | 21062003 | 174047 | aot560   | 24          | 0.2578 | -0.1223 | 0.0792 | 0.1643 | 0.2425       | 0.1245      | 0.0452      | 0.1040  |



| Report on the validation | of MERIS IBAER land products  |
|--------------------------|-------------------------------|
|                          | OF MENTS IDALIN IANU PRODUCIS |

| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 107              |      |          |  |  |  |  |

| Site     | date     | hour   | variable | Nb<br>pixel | Offset | Slope  | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt<br>baer | Sdt ddv |
|----------|----------|--------|----------|-------------|--------|--------|--------|--------|--------------|-------------|-------------|---------|
| MARICOPA | 16012003 | 174256 | aot560   | 456         | 0.2530 | 0.7950 | 0.7828 | 0.1822 | 0.5383       | 0.3589      | 0.1369      | 0.1523  |
| MARICOPA | 10072003 | 174329 | aot560   | 75          | 0.2059 | 1.2105 | 0.5914 | 0.2480 | 0.4389       | 0.1925      | 0.2151      | 0.1366  |
| MARICOPA | 23102003 | 174331 | aot560   | 5           | 0.4533 | 0.1194 | 0.3329 | 0.2829 | 0.4781       | 0.2078      | 0.0220      | 0.1064  |
| MARICOPA | 27112003 | 174332 | aot560   | 28          | 0.2512 | 0.6611 | 0.5519 | 0.1777 | 0.4025       | 0.2289      | 0.1013      | 0.1138  |
| MARICOPA | 18092003 | 174337 | aot560   | 190         | 0.1645 | 0.4638 | 0.0507 | 0.1342 | 0.1913       | 0.0578      | 0.0541      | 0.0263  |
| MARICOPA | 04022003 | 174545 | aot560   | 77          | 0.3739 | 0.6012 | 0.5099 | 0.2467 | 0.5806       | 0.3439      | 0.1477      | 0.1754  |
| MARICOPA | 11032003 | 174615 | aot560   | 2925        | 0.0817 | 0.8804 | 0.3067 | 0.0621 | 0.2298       | 0.1682      | 0.1026      | 0.0645  |
| MARICOPA | 19012003 | 174836 | aot560   | 349         | 0.1513 | 1.0583 | 0.8789 | 0.1701 | 0.4862       | 0.3164      | 0.2071      | 0.1835  |
| MARICOPA | 30032003 | 174838 | aot560   | 829         | 0.0754 | 0.8560 | 0.3359 | 0.0582 | 0.1810       | 0.1233      | 0.0783      | 0.0530  |
| MARICOPA | 13072003 | 174843 | aot560   | 1080        | 0.2629 | 1.1465 | 0.4143 | 0.3006 | 0.5546       | 0.2544      | 0.1871      | 0.1050  |
| MARICOPA | 13072003 | 174911 | aot560   | 197         | 0.2219 | 1.2089 | 0.5521 | 0.2838 | 0.5719       | 0.2896      | 0.2213      | 0.1360  |
| MARICOPA | 21092003 | 174916 | aot560   | 65          | 0.1847 | 0.5591 | 0.0852 | 0.1499 | 0.2299       | 0.0809      | 0.0720      | 0.0376  |
| MARICOPA | 30032003 | 174917 | aot560   | 1326        | 0.0920 | 0.8861 | 0.1473 | 0.0792 | 0.1934       | 0.1144      | 0.1111      | 0.0481  |
| MARICOPA | 26102003 | 174920 | aot560   | 31          | 0.1897 | 1.5237 | 0.7781 | 0.3125 | 0.5320       | 0.2246      | 0.1894      | 0.1096  |
| MARICOPA | 10052003 | 180035 | aot560   | 6010        | 0.0587 | 1.0515 | 0.5416 | 0.0694 | 0.2736       | 0.2043      | 0.1371      | 0.0960  |
| MARICOPA | 28092003 | 172931 | aot860   | 546         | 0.0504 | 1.8227 | 0.6989 | 0.1326 | 0.2054       | 0.0851      | 0.1478      | 0.0678  |
| MARICOPA | 28092003 | 172948 | aot860   | 943         | 0.1054 | 0.7094 | 0.1598 | 0.0911 | 0.1417       | 0.0512      | 0.0599      | 0.0338  |
| MARICOPA | 21112003 | 173142 | aot860   | 76          | 0.1287 | 1.2160 | 0.4216 | 0.1476 | 0.2295       | 0.0829      | 0.1482      | 0.0791  |
| MARICOPA | 12092003 | 173149 | aot860   | 569         | 0.0933 | 1.1603 | 0.1792 | 0.1001 | 0.1421       | 0.0421      | 0.0596      | 0.0218  |



| Report on the validation of MERIS IBAER land products     Issue     1     Date       Rev     1     Date       Page     108 |                                                       | Ref   | NOV-33 | NOV-3341-NT-3284 |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|--------|------------------|--|--|
| Rev     1     Date       Page     108                                                                                      | Penert on the validation of MERIC IRAER land products | Issue | 1      | Date             |  |  |
| Page 108                                                                                                                   | Report on the validation of MERIS IBAER Iand products | Rev   | 1      | Date             |  |  |
|                                                                                                                            |                                                       | Page  | 108    |                  |  |  |

31/03/06 07/04/06

| Site     | date     | hour   | variable | Nb<br>pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt<br>baer | Sdt ddv |
|----------|----------|--------|----------|-------------|--------|---------|--------|--------|--------------|-------------|-------------|---------|
| MARICOPA | 17102003 | 173212 | aot860   | 21          | 0.0875 | 0.5055  | 0.1550 | 0.0667 | 0.1120       | 0.0486      | 0.0547      | 0.0426  |
| MARICOPA | 12092003 | 173225 | aot860   | 576         | 0.0925 | 1.0059  | 0.1937 | 0.0927 | 0.1361       | 0.0434      | 0.0458      | 0.0200  |
| MARICOPA | 29012003 | 173427 | aot860   | 317         | 0.1968 | 0.7919  | 0.4449 | 0.1647 | 0.3270       | 0.1644      | 0.1492      | 0.1256  |
| MARICOPA | 05112003 | 173431 | aot860   | 36          | 0.2306 | 0.5317  | 0.3182 | 0.1835 | 0.3030       | 0.1361      | 0.1559      | 0.1654  |
| MARICOPA | 07072003 | 173722 | aot860   | 495         | 0.2073 | 0.4192  | 0.2203 | 0.1654 | 0.2459       | 0.0921      | 0.0936      | 0.1048  |
| MARICOPA | 15092003 | 173728 | aot860   | 942         | 0.0756 | 1.8586  | 0.5224 | 0.1416 | 0.2048       | 0.0695      | 0.1259      | 0.0490  |
| MARICOPA | 20102003 | 173800 | aot860   | 22          | 0.0270 | 1.7776  | 0.5521 | 0.0994 | 0.1670       | 0.0787      | 0.1445      | 0.0604  |
| MARICOPA | 15092003 | 173807 | aot860   | 609         | 0.0982 | 1.0886  | 0.1303 | 0.1026 | 0.1518       | 0.0492      | 0.0767      | 0.0254  |
| MARICOPA | 21062003 | 174047 | aot860   | 24          | 0.2178 | -0.2498 | 0.1164 | 0.1526 | 0.1918       | 0.1039      | 0.0747      | 0.1020  |
| MARICOPA | 16012003 | 174256 | aot860   | 456         | 0.3108 | 0.4728  | 0.5898 | 0.1697 | 0.4536       | 0.3019      | 0.0891      | 0.1447  |
| MARICOPA | 10072003 | 174329 | aot860   | 75          | 0.2454 | 0.5465  | 0.2923 | 0.1911 | 0.3191       | 0.1348      | 0.1135      | 0.1123  |
| MARICOPA | 23102003 | 174331 | aot860   | 5           | 0.4036 | 0.1216  | 0.8509 | 0.2845 | 0.4227       | 0.1575      | 0.0173      | 0.1309  |
| MARICOPA | 27112003 | 174332 | aot860   | 28          | 0.2753 | 0.5018  | 0.4680 | 0.1900 | 0.3716       | 0.1919      | 0.0926      | 0.1262  |
| MARICOPA | 18092003 | 174337 | aot860   | 190         | 0.1165 | 0.4852  | 0.0466 | 0.0929 | 0.1396       | 0.0476      | 0.0575      | 0.0256  |
| MARICOPA | 04022003 | 174545 | aot860   | 77          | 0.3935 | 0.3107  | 0.3300 | 0.2254 | 0.4874       | 0.3020      | 0.1012      | 0.1872  |
| MARICOPA | 11032003 | 174615 | aot860   | 2925        | 0.0902 | 0.7141  | 0.2125 | 0.0538 | 0.1900       | 0.1398      | 0.1037      | 0.0669  |
| MARICOPA | 19012003 | 174836 | aot860   | 349         | 0.1915 | 0.7752  | 0.7280 | 0.1368 | 0.3996       | 0.2684      | 0.1569      | 0.1727  |
| MARICOPA | 30032003 | 174838 | aot860   | 829         | 0.0635 | 0.7066  | 0.1795 | 0.0363 | 0.1372       | 0.1043      | 0.0877      | 0.0526  |
| MARICOPA | 13072003 | 174843 | aot860   | 1080        | 0.2872 | 0.5505  | 0.2059 | 0.2118 | 0.3844       | 0.1767      | 0.1117      | 0.0921  |

© Noveltis 2006


|          |                                                       | Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |
|----------|-------------------------------------------------------|-------|--------|------------------|----------|--|--|
| <b>Y</b> | Papart on the validation of MERIC IRAER land products | Issue | 1      | Date             | 31/03/06 |  |  |
|          | Report of the validation of MERIS IBAER land products | Rev   | 1      | Date             | 07/04/06 |  |  |
| is       |                                                       | Page  | 109    |                  |          |  |  |

| Site     | date     | hour   | variable | Nb    | Offset | Slope  | R2     | rmse   | Mean   | Mean   | Sdt    | Sdt ddv |
|----------|----------|--------|----------|-------|--------|--------|--------|--------|--------|--------|--------|---------|
|          |          |        |          | pixel |        |        |        |        | baer   | ddv    | baer   |         |
| MARICOPA | 13072003 | 174911 | aot860   | 197   | 0.2740 | 0.5967 | 0.3342 | 0.1966 | 0.3966 | 0.2054 | 0.1181 | 0.1144  |
| MARICOPA | 21092003 | 174916 | aot860   | 65    | 0.1473 | 0.5109 | 0.0906 | 0.1166 | 0.1808 | 0.0656 | 0.0626 | 0.0369  |
| MARICOPA | 30032003 | 174917 | aot860   | 1326  | 0.0803 | 0.6155 | 0.1228 | 0.0475 | 0.1389 | 0.0953 | 0.0858 | 0.0489  |
| MARICOPA | 26102003 | 174920 | aot860   | 31    | 0.2250 | 0.9689 | 0.5689 | 0.2209 | 0.3546 | 0.1337 | 0.0910 | 0.0709  |
| MARICOPA | 10052003 | 180035 | aot860   | 6010  | 0.0660 | 0.9963 | 0.5201 | 0.0654 | 0.2311 | 0.1657 | 0.1177 | 0.0852  |

# 10.10. MONGU

| Site  | date     | hour   | variable | Nb pixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|-------|----------|--------|----------|----------|--------|---------|--------|--------|--------------|-------------|----------|---------|
| MONGU | 07052003 | 080515 | alpha    | 22316    | 1.2517 | -0.4496 | 0.2441 | 0.8869 | 0.6549       | 1.3276      | 0.3628   | 0.3987  |
| MONGU | 21042003 | 080806 | alpha    | 27512    | 0.7749 | -0.2323 | 0.1216 | 0.9328 | 0.4844       | 1.2503      | 0.2880   | 0.4322  |
| MONGU | 14062003 | 081057 | alpha    | 978      | 0.6691 | -0.0446 | 0.0040 | 0.9056 | 0.6070       | 1.3939      | 0.3016   | 0.4292  |
| MONGU | 07082003 | 081352 | alpha    | 288      | 0.5181 | 0.3129  | 0.2146 | 0.6031 | 0.9908       | 1.5109      | 0.3005   | 0.4449  |
| MONGU | 09072003 | 082507 | alpha    | 322      | 0.6275 | -0.0474 | 0.0020 | 1.1975 | 0.5465       | 1.7077      | 0.2940   | 0.2798  |
| MONGU | 23052003 | 080222 | alpha    | 5094     | 0.9347 | -0.2100 | 0.0749 | 0.8771 | 0.6463       | 1.3731      | 0.3114   | 0.4058  |
| MONGU | 07052003 | 080515 | aot412   | 22316    | 0.1628 | 1.2486  | 0.9582 | 0.2399 | 0.5174       | 0.2840      | 0.2851   | 0.2235  |
| MONGU | 21042003 | 080806 | aot412   | 27512    | 0.1731 | 1.1079  | 0.9058 | 0.1932 | 0.3738       | 0.1812      | 0.1535   | 0.1318  |
| MONGU | 14062003 | 081057 | aot412   | 978      | 0.1545 | 1.3896  | 0.8769 | 0.2597 | 0.5140       | 0.2587      | 0.1824   | 0.1229  |



| Ref   | NOV-33 | NOV-3341-NT-3284 |          |  |  |  |  |
|-------|--------|------------------|----------|--|--|--|--|
| Issue | 1      | Date             | 31/03/06 |  |  |  |  |
| Rev   | 1      | Date             | 07/04/06 |  |  |  |  |
| Page  | 110    |                  |          |  |  |  |  |

| Site  | date     | hour   | variable | Nb pixel | Offset | Slope  | R2     | rmse   | Mean<br>baer | Mean<br>ddv | Sdt baer | Sdt ddv |
|-------|----------|--------|----------|----------|--------|--------|--------|--------|--------------|-------------|----------|---------|
| MONGU | 07082003 | 081352 | aot412   | 288      | 0.1797 | 1.6360 | 0.8443 | 0.4903 | 0.9528       | 0.4726      | 0.2771   | 0.1557  |
| MONGU | 09072003 | 082507 | aot412   | 322      | 0.2562 | 1.7565 | 0.6865 | 0.4762 | 0.7587       | 0.2861      | 0.1635   | 0.0771  |
| MONGU | 23052003 | 080222 | aot412   | 5094     | 0.1711 | 1.2304 | 0.9201 | 0.2294 | 0.4683       | 0.2416      | 0.1931   | 0.1506  |
| MONGU | 07052003 | 080515 | aot560   | 22316    | 0.1963 | 1.0249 | 0.8848 | 0.2014 | 0.4037       | 0.2024      | 0.1891   | 0.1736  |
| MONGU | 21042003 | 080806 | aot560   | 27512    | 0.1806 | 0.9338 | 0.7580 | 0.1721 | 0.3031       | 0.1311      | 0.1136   | 0.1059  |
| MONGU | 14062003 | 081057 | aot560   | 978      | 0.1940 | 1.3399 | 0.6693 | 0.2544 | 0.4249       | 0.1724      | 0.1495   | 0.0913  |
| MONGU | 07082003 | 081352 | aot560   | 288      | 0.3425 | 1.1427 | 0.5368 | 0.3856 | 0.6851       | 0.2998      | 0.1697   | 0.1088  |
| MONGU | 09072003 | 082507 | aot560   | 322      | 0.3807 | 1.5132 | 0.3421 | 0.4690 | 0.6391       | 0.1708      | 0.1292   | 0.0499  |
| MONGU | 23052003 | 080222 | aot560   | 5094     | 0.1972 | 1.0682 | 0.7980 | 0.2088 | 0.3760       | 0.1674      | 0.1408   | 0.1178  |
| MONGU | 07052003 | 080515 | aot860   | 22316    | 0.2124 | 0.6691 | 0.6350 | 0.1750 | 0.2974       | 0.1271      | 0.1022   | 0.1218  |
| MONGU | 21042003 | 080806 | aot860   | 27512    | 0.2105 | 0.4924 | 0.3701 | 0.1722 | 0.2521       | 0.0846      | 0.0633   | 0.0782  |
| MONGU | 14062003 | 081057 | aot860   | 978      | 0.2236 | 1.0889 | 0.3413 | 0.2325 | 0.3316       | 0.0992      | 0.1190   | 0.0638  |
| MONGU | 07082003 | 081352 | aot860   | 288      | 0.3644 | 0.4972 | 0.1753 | 0.2858 | 0.4446       | 0.1613      | 0.0906   | 0.0763  |
| MONGU | 09072003 | 082507 | aot860   | 322      | 0.4555 | 0.6630 | 0.0389 | 0.4277 | 0.5104       | 0.0828      | 0.1017   | 0.0302  |
| MONGU | 23052003 | 080222 | aot860   | 5094     | 0.2034 | 0.8138 | 0.5349 | 0.1851 | 0.2859       | 0.1015      | 0.0942   | 0.0846  |



## 10.11. SKUKUZA

| Site    | date     | hour   | variable | Nb<br>nixel | Offset | Slope   | R2     | rmse   | Mean<br>baer | Mean<br>ddy | Sdt<br>baer | Sdt ddv |
|---------|----------|--------|----------|-------------|--------|---------|--------|--------|--------------|-------------|-------------|---------|
|         |          |        |          | рихси       |        |         |        |        | buci         | uuv         | buei        |         |
| SKUKUZA | 29042003 | 071914 | alpha    | 6810        | 0.5473 | 0.0875  | 0.0096 | 0.4301 | 0.6093       | 0.7082      | 0.4108      | 0.4588  |
| SKUKUZA | 09112003 | 072206 | alpha    | 4844        | 0.7688 | -0.3548 | 0.0898 | 0.5584 | 0.5861       | 0.5151      | 0.4842      | 0.4088  |
| SKUKUZA | 24052003 | 073317 | alpha    | 17879       | 0.5848 | -0.1176 | 0.0384 | 0.8044 | 0.4604       | 1.0582      | 0.2889      | 0.4817  |
| SKUKUZA | 18112003 | 073905 | alpha    | 3912        | 1.0057 | -0.1492 | 0.0228 | 0.6258 | 0.9251       | 0.5400      | 0.4244      | 0.4293  |
| SKUKUZA | 29042003 | 071914 | aot412   | 6810        | 0.1371 | 0.9336  | 0.7948 | 0.1237 | 0.3289       | 0.2055      | 0.1300      | 0.1241  |
| SKUKUZA | 09112003 | 072206 | aot412   | 4844        | 0.1753 | 0.6040  | 0.4818 | 0.1090 | 0.2791       | 0.1719      | 0.0439      | 0.0504  |
| SKUKUZA | 24052003 | 073317 | aot412   | 17879       | 0.1829 | 0.6676  | 0.6814 | 0.1210 | 0.3127       | 0.1945      | 0.0626      | 0.0774  |
| SKUKUZA | 18112003 | 073905 | aot412   | 3912        | 0.1921 | 0.6609  | 0.6932 | 0.1329 | 0.3134       | 0.1834      | 0.0655      | 0.0825  |
| SKUKUZA | 29042003 | 071914 | aot560   | 6810        | 0.1330 | 0.7983  | 0.6704 | 0.1009 | 0.2711       | 0.1731      | 0.1141      | 0.1170  |
| SKUKUZA | 09112003 | 072206 | aot560   | 4844        | 0.1829 | 0.1973  | 0.0225 | 0.0748 | 0.2126       | 0.1502      | 0.0675      | 0.0513  |
| SKUKUZA | 24052003 | 073317 | aot560   | 17879       | 0.2016 | 0.4504  | 0.2975 | 0.1275 | 0.2678       | 0.1469      | 0.0610      | 0.0739  |
| SKUKUZA | 18112003 | 073905 | aot560   | 3912        | 0.1288 | 0.5071  | 0.3728 | 0.0642 | 0.2097       | 0.1597      | 0.0677      | 0.0815  |
| SKUKUZA | 29042003 | 071914 | aot860   | 6810        | 0.1395 | 0.5788  | 0.5112 | 0.0933 | 0.2197       | 0.1385      | 0.0883      | 0.1091  |
| SKUKUZA | 09112003 | 072206 | aot860   | 4844        | 0.2020 | -0.0748 | 0.0037 | 0.0885 | 0.1926       | 0.1262      | 0.0671      | 0.0544  |
| SKUKUZA | 24052003 | 073317 | aot860   | 17879       | 0.2077 | 0.1821  | 0.0524 | 0.1367 | 0.2262       | 0.1019      | 0.0552      | 0.0694  |
| SKUKUZA | 18112003 | 073905 | aot860   | 3912        | 0.1240 | 0.3191  | 0.1830 | 0.0647 | 0.1667       | 0.1338      | 0.0610      | 0.0817  |



# 11. Annexe 5 : Surface reflectance map comparison

The following images are the results of the intercomparison of surface reflectances estimated using either SMAC or UBAC methods. For each date, the comparison is represented for 4 channels (channel 2, 5, 7 and 13). The difference between the reflectances is also represented with the histogram of the differences. The AOT map at 550 nm is represented as last map with the histogram of the AOT for the valid pixels.



31/03/06

07/04/06

#### MER\_RR 2PP01R20030322\_101214\_000001102014\_00466\_05530\_0001.N1.dim





| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 114              |      |          |  |  |  |  |





### MER\_RR\_2PP01R20030430\_132600\_000001072016\_00024\_06090\_0001.N1.dim





| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 116              |      |          |  |  |  |  |





Date

Date

31/03/06

07/04/06

#### MER RR 2PP01R20030523\_080222\_000001072016\_00350\_06416\_0001.N1.dim





| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 118              |      |          |  |  |  |  |





| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 119              |      |          |  |  |  |  |

### MER\_RR\_2PP01R20030601\_094456\_000001072016\_00480\_06546\_0001.N1.dim





| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 120              |      |          |  |  |  |  |





### MER\_RR\_2PP01R20030616\_151327\_000001102017\_00197\_06764\_0001.N1.dim





| Ref   | NOV-3341-NT-3284 |      |          |  |  |  |  |
|-------|------------------|------|----------|--|--|--|--|
| Issue | 1                | Date | 31/03/06 |  |  |  |  |
| Rev   | 1                | Date | 07/04/06 |  |  |  |  |
| Page  | 122              |      |          |  |  |  |  |





31/03/06

07/04/06

#### MER RR 2PP01R20030621\_155918\_000001102017\_00269\_06836\_0001.N1.data





| Ref   | NOV-3341-NT-3284 |      |          |  |
|-------|------------------|------|----------|--|
| Issue | 1 Date 31/03/06  |      |          |  |
| Rev   | 1                | Date | 07/04/06 |  |
| Page  | 124              |      |          |  |





### MER\_RR\_\_2PP01R20030711\_102624\_000001072018\_00051\_07119\_0001.N1.data





| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 126              |      |          |





### MER\_RR\_\_2PP01R20030728\_095206\_000001102018\_00294\_07362\_0001.N1.data





| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 128              |      |          |





31/03/06

07/04/06

#### 2PP01R20030802\_103459\_000001102018\_00366\_07434\_0001.N1.data MER RR





| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 130              |      |          |





### MER\_RR\_2PP01R20030825\_101253\_000001072019\_00194\_07763\_0001.N1.data





| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 132              |      |          |





### MER\_RR\_2PP01R20030915\_105232\_000001102019\_00495\_08064\_0001.N1.data









31/03/06

07/04/06

#### 2PP01R20030915\_173807\_000001072019\_00499\_08068\_0001.N1.data MER RR









### MER\_RR\_2PP01R20031118\_073905\_000001072021\_00407\_08978\_0001.N1.data





| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 138              |      |          |





|  | Report on the validation of MERIS IBAER land products | Ref   | NOV-3341-NT-3284 |      |          |
|--|-------------------------------------------------------|-------|------------------|------|----------|
|  |                                                       | Issue | 1                | Date | 31/03/06 |
|  |                                                       | Rev   | 1                | Date | 07/04/06 |
|  |                                                       |       | 139              |      |          |

MER\_RR\_2PP01R20031121\_154959\_000001072021\_00455\_09026\_0001.N1.data







| Ref   | NOV-3341-NT-3284 |      |          |
|-------|------------------|------|----------|
| Issue | 1                | Date | 31/03/06 |
| Rev   | 1                | Date | 07/04/06 |
| Page  | 141              |      |          |

